The ANKK1/DRD2 gene TaqIA polymorphism (rs1800497) is associated with the severity of extrapyramidal side effects of haloperidol treatment in CYP2D6 extensive metabolizers with schizophrenia spectrum disorders.
Andrey Alexandrovitch Kibitov, Elena Mikhaylovna Kiryanova, Ludmila Ivanovna Salnikova, Irina Vladimirovna Bure, Alexander Borisovitch Shmukler, Alexander Olegovitch Kibitov
{"title":"The ANKK1/DRD2 gene TaqIA polymorphism (rs1800497) is associated with the severity of extrapyramidal side effects of haloperidol treatment in CYP2D6 extensive metabolizers with schizophrenia spectrum disorders.","authors":"Andrey Alexandrovitch Kibitov, Elena Mikhaylovna Kiryanova, Ludmila Ivanovna Salnikova, Irina Vladimirovna Bure, Alexander Borisovitch Shmukler, Alexander Olegovitch Kibitov","doi":"10.1515/dmpt-2022-0143","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Extrapyramidal symptoms (EPS) are one of the most prominent side effects of haloperidol. Variability of EPS severity may be associated with the genetic factors, affecting both haloperidol pharmacokinetics (e.g., CYP2D6) and pharmacodynamics (e.g., DRD2, ANKK1). We conducted a 3-week prospective study to investigate the associations of ANKK1/DRD2 TaqIA (rs1800497), DRD2 -141C Ins/Del (rs1799732) polymorphisms and CYP2D6 metabolic phenotype on the efficacy of haloperidol treatment and severity of EPS in patients with schizophrenia spectrum disorders.</p><p><strong>Methods: </strong>In total, 57 inpatients with schizophrenia spectrum disorders (24 (42.1%)) females; age -46.7 (11.8) years (M(SD)) of European ancestry were enrolled. BARS and SAS scales were used to assess EPS. PANSS and CGI scales - to assess the efficacy of haloperidol treatment. Genotyping was performed by real-time PCR. CYP2D6 metabolic phenotype was predicted by the CYP2D6 *3, *4, *5, *6, *9, *10, *41 and xN genotypes.</p><p><strong>Results: </strong>Minor C allele of TaqIA was associated with higher scores of BARS (p=0.029) and SAS (p=0.024) on day 21 and minor Del allele of -141C Ins/Del - with more prominent clinical improvement by CGI scale (p=0.007) but not by PANSS. These differences were observed only in extensive CYP2D6 metabolizers, although no associations with the metabolic type itself were found. General linear model showed that the combination of TaqIA genotype and metabolic type was significantly associated with BARS score on day 21 (p=0.013).</p><p><strong>Conclusions: </strong>Our results highlight the importance of using both pharmacokinetic and pharmacodynamic genetic markers for predicting haloperidol treatment response to personalize schizophrenia spectrum disorders treatment.</p>","PeriodicalId":11332,"journal":{"name":"Drug metabolism and personalized therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism and personalized therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dmpt-2022-0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1
Abstract
Objectives: Extrapyramidal symptoms (EPS) are one of the most prominent side effects of haloperidol. Variability of EPS severity may be associated with the genetic factors, affecting both haloperidol pharmacokinetics (e.g., CYP2D6) and pharmacodynamics (e.g., DRD2, ANKK1). We conducted a 3-week prospective study to investigate the associations of ANKK1/DRD2 TaqIA (rs1800497), DRD2 -141C Ins/Del (rs1799732) polymorphisms and CYP2D6 metabolic phenotype on the efficacy of haloperidol treatment and severity of EPS in patients with schizophrenia spectrum disorders.
Methods: In total, 57 inpatients with schizophrenia spectrum disorders (24 (42.1%)) females; age -46.7 (11.8) years (M(SD)) of European ancestry were enrolled. BARS and SAS scales were used to assess EPS. PANSS and CGI scales - to assess the efficacy of haloperidol treatment. Genotyping was performed by real-time PCR. CYP2D6 metabolic phenotype was predicted by the CYP2D6 *3, *4, *5, *6, *9, *10, *41 and xN genotypes.
Results: Minor C allele of TaqIA was associated with higher scores of BARS (p=0.029) and SAS (p=0.024) on day 21 and minor Del allele of -141C Ins/Del - with more prominent clinical improvement by CGI scale (p=0.007) but not by PANSS. These differences were observed only in extensive CYP2D6 metabolizers, although no associations with the metabolic type itself were found. General linear model showed that the combination of TaqIA genotype and metabolic type was significantly associated with BARS score on day 21 (p=0.013).
Conclusions: Our results highlight the importance of using both pharmacokinetic and pharmacodynamic genetic markers for predicting haloperidol treatment response to personalize schizophrenia spectrum disorders treatment.
期刊介绍:
Drug Metabolism and Personalized Therapy (DMPT) is a peer-reviewed journal, and is abstracted/indexed in relevant major Abstracting Services. It provides up-to-date research articles, reviews and opinion papers in the wide field of drug metabolism research, covering established, new and potential drugs, environmentally toxic chemicals, the mechanisms by which drugs may interact with each other and with biological systems, and the pharmacological and toxicological consequences of these interactions and drug metabolism and excretion. Topics: drug metabolizing enzymes, pharmacogenetics and pharmacogenomics, biochemical pharmacology, molecular pathology, clinical pharmacology, pharmacokinetics and drug-drug interactions, immunopharmacology, neuropsychopharmacology.