Individual bias and fluctuations in collective decision making: from algorithms to Hamiltonians.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2023-06-13 DOI:10.1088/1478-3975/acd6ce
Petro Sarkanych, Mariana Krasnytska, Luis Gómez-Nava, Pawel Romanczuk, Yurij Holovatch
{"title":"Individual bias and fluctuations in collective decision making: from algorithms to Hamiltonians.","authors":"Petro Sarkanych,&nbsp;Mariana Krasnytska,&nbsp;Luis Gómez-Nava,&nbsp;Pawel Romanczuk,&nbsp;Yurij Holovatch","doi":"10.1088/1478-3975/acd6ce","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we reconsider the spin model suggested recently to understand some features of collective decision making among higher organisms (Hartnett<i>et al</i>2016<i>Phys. Rev. Lett.</i><b>116</b>038701). Within the model, the state of an agent<i>i</i>is described by the pair of variables corresponding to its opinionSi=±1and a bias<i>ω</i><sub><i>i</i></sub>toward any of the opposing values of<i>S</i><sub><i>i</i></sub>. Collective decision making is interpreted as an approach to the equilibrium state within the nonlinear voter model subject to a social pressure and a probabilistic algorithm. Here, we push such a physical analogy further and give the statistical physics interpretation of the model, describing it in terms of the Hamiltonian of interaction and looking for the equilibrium state via explicit calculation of its partition function. We show that, depending on the assumptions about the nature of social interactions, two different Hamiltonians can be formulated, which can be solved using different methods. In such an interpretation the temperature serves as a measure of fluctuations, not considered before in the original model. We find exact solutions for the thermodynamics of the model on the complete graph. The general analytical predictions are confirmed using individual-based simulations. The simulations also allow us to study the impact of system size and initial conditions on the collective decision making in finite-sized systems, in particular, with respect to convergence to metastable states.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acd6ce","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we reconsider the spin model suggested recently to understand some features of collective decision making among higher organisms (Hartnettet al2016Phys. Rev. Lett.116038701). Within the model, the state of an agentiis described by the pair of variables corresponding to its opinionSi=±1and a biasωitoward any of the opposing values ofSi. Collective decision making is interpreted as an approach to the equilibrium state within the nonlinear voter model subject to a social pressure and a probabilistic algorithm. Here, we push such a physical analogy further and give the statistical physics interpretation of the model, describing it in terms of the Hamiltonian of interaction and looking for the equilibrium state via explicit calculation of its partition function. We show that, depending on the assumptions about the nature of social interactions, two different Hamiltonians can be formulated, which can be solved using different methods. In such an interpretation the temperature serves as a measure of fluctuations, not considered before in the original model. We find exact solutions for the thermodynamics of the model on the complete graph. The general analytical predictions are confirmed using individual-based simulations. The simulations also allow us to study the impact of system size and initial conditions on the collective decision making in finite-sized systems, in particular, with respect to convergence to metastable states.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集体决策中的个人偏见和波动:从算法到哈密顿量。
在本文中,我们重新考虑了最近提出的自旋模型,以理解高等生物集体决策的一些特征(Hartnettet al2016Phys.)。启Lett.116038701)。在模型中,主体的状态由对应于其意见si =±1的一对变量和偏向于任何相反si值的偏差ω来描述。集体决策是在社会压力和概率算法作用下的非线性选民模型中达到均衡状态的一种方法。在这里,我们进一步推动了这样的物理类比,并给出了模型的统计物理解释,用相互作用的哈密顿量来描述它,并通过显式计算其配分函数来寻找平衡状态。我们表明,根据对社会互动性质的假设,可以形成两个不同的哈密顿量,它们可以用不同的方法求解。在这种解释中,温度作为波动的量度,在原来的模型中没有考虑到这一点。我们在完全图上找到了模型热力学的精确解。一般的分析预测通过基于个体的模拟得到证实。模拟还允许我们研究系统大小和初始条件对有限大小系统中的集体决策的影响,特别是关于收敛到亚稳态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
A role of fear on diseased food web model with multiple functional response. Two fitness inference schemes compared using allele frequencies from 1,068,391 sequences sampled in the UK during the COVID-19 pandemic. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. An exactly solvable model for RNA polymerase during the elongation stage. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1