{"title":"Nanomedicine - Immune System Interactions: Limitations and Opportunities for the Treatment of Cancer.","authors":"Sara Elsafy, Josbert Metselaar, Twan Lammers","doi":"10.1007/164_2023_685","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticles interact with immune cells in many different ways. These interactions are crucially important for determining nanoparticles' ability to be used for cancer therapy. Traditionally, strategies such as PEGylation have been employed to reduce (the kinetics of) nanoparticle uptake by immune cells, to endow them with long circulation properties, and to enable them to exploit the Enhanced Permeability and Retention (EPR) effect to accumulate in tumors. More recently, with immunotherapy becoming an increasingly important cornerstone in the clinical management of cancer, ever more research efforts in academia and industry are focusing on specifically targeting immune cells with nanoparticles. In this chapter, we describe the barriers and opportunities of immune cell targeting with nanoparticles, and we discuss how nanoparticle-based drug delivery to specific immune cell populations in tumors as well as in secondary myeloid and lymphoid organs (such as bone marrow, lymph nodes, and spleen) can be leveraged to boost the efficacy of cancer immunotherapy.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"231-265"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2023_685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles interact with immune cells in many different ways. These interactions are crucially important for determining nanoparticles' ability to be used for cancer therapy. Traditionally, strategies such as PEGylation have been employed to reduce (the kinetics of) nanoparticle uptake by immune cells, to endow them with long circulation properties, and to enable them to exploit the Enhanced Permeability and Retention (EPR) effect to accumulate in tumors. More recently, with immunotherapy becoming an increasingly important cornerstone in the clinical management of cancer, ever more research efforts in academia and industry are focusing on specifically targeting immune cells with nanoparticles. In this chapter, we describe the barriers and opportunities of immune cell targeting with nanoparticles, and we discuss how nanoparticle-based drug delivery to specific immune cell populations in tumors as well as in secondary myeloid and lymphoid organs (such as bone marrow, lymph nodes, and spleen) can be leveraged to boost the efficacy of cancer immunotherapy.
期刊介绍:
The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.