Bartosz Adam Frycz, Klaudia Nowicka, Anna Konopka, Marius Christian Hoener, Ewa Bulska, Leszek Kaczmarek, Marzena Stefaniuk
{"title":"Activation of trace amine-associated receptor 1 (TAAR1) transiently reduces alcohol drinking in socially housed mice","authors":"Bartosz Adam Frycz, Klaudia Nowicka, Anna Konopka, Marius Christian Hoener, Ewa Bulska, Leszek Kaczmarek, Marzena Stefaniuk","doi":"10.1111/adb.13285","DOIUrl":null,"url":null,"abstract":"<p>Alcohol dependence is characterized by the abnormal release of dopamine in the brain reward-related areas. Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that negatively regulates dopamine neurotransmission and thus is a promising target in the treatment of drug addiction. However, the role of TAAR1 in the regulation of alcohol abuse remains understudied. Here, we assessed the effect of TAAR1 activation on alcohol drinking behaviours of C57Bl/6J female mice housed in IntelliCages. The animals were administered with either vehicle or TAAR1 full selective agonist, RO5256390, and tested for alcohol consumption, alcohol preference and motivation for alcohol seeking. We found that mice with the highest preference for alcohol (high drinkers) in the RO5256390 group consumed less alcohol and had lower alcohol preference in comparison with high drinkers in the vehicle group, during 20 h of free alcohol access (FAA). We also found decreased alcohol consumption and alcohol preference comparing all animals in the RO5256390 to all animals in the vehicle group, during 20 h of FAA performed after the abstinence. These effects of RO5256390 lasted for the first 24 h after administration that roughly corresponded to the compound level in the brain, measured by mass spectrometry. Finally, we found that administration of RO5256390 may attenuate motivation for alcohol seeking. Taken together, our findings reveal that activation of TAAR1 may transiently reduce alcohol drinking; thus, TAAR1 is a promising target for the treatment of alcohol abuse and relapse.</p>","PeriodicalId":7289,"journal":{"name":"Addiction Biology","volume":"28 7","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction Biology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/adb.13285","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Alcohol dependence is characterized by the abnormal release of dopamine in the brain reward-related areas. Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that negatively regulates dopamine neurotransmission and thus is a promising target in the treatment of drug addiction. However, the role of TAAR1 in the regulation of alcohol abuse remains understudied. Here, we assessed the effect of TAAR1 activation on alcohol drinking behaviours of C57Bl/6J female mice housed in IntelliCages. The animals were administered with either vehicle or TAAR1 full selective agonist, RO5256390, and tested for alcohol consumption, alcohol preference and motivation for alcohol seeking. We found that mice with the highest preference for alcohol (high drinkers) in the RO5256390 group consumed less alcohol and had lower alcohol preference in comparison with high drinkers in the vehicle group, during 20 h of free alcohol access (FAA). We also found decreased alcohol consumption and alcohol preference comparing all animals in the RO5256390 to all animals in the vehicle group, during 20 h of FAA performed after the abstinence. These effects of RO5256390 lasted for the first 24 h after administration that roughly corresponded to the compound level in the brain, measured by mass spectrometry. Finally, we found that administration of RO5256390 may attenuate motivation for alcohol seeking. Taken together, our findings reveal that activation of TAAR1 may transiently reduce alcohol drinking; thus, TAAR1 is a promising target for the treatment of alcohol abuse and relapse.
期刊介绍:
Addiction Biology is focused on neuroscience contributions and it aims to advance our understanding of the action of drugs of abuse and addictive processes. Papers are accepted in both animal experimentation or clinical research. The content is geared towards behavioral, molecular, genetic, biochemical, neuro-biological and pharmacology aspects of these fields.
Addiction Biology includes peer-reviewed original research reports and reviews.
Addiction Biology is published on behalf of the Society for the Study of Addiction to Alcohol and other Drugs (SSA). Members of the Society for the Study of Addiction receive the Journal as part of their annual membership subscription.