Tao Zhu, Bingran Chen, Han Han, Xu Lu, Zhuo Chen, Ting Ye, Hui Zhao, Meng Zheng, Chao Huang
{"title":"Zymosan A produces a rapid and sustained antidepressant effect in chronically stressed mice by stimulating hippocampal microglia.","authors":"Tao Zhu, Bingran Chen, Han Han, Xu Lu, Zhuo Chen, Ting Ye, Hui Zhao, Meng Zheng, Chao Huang","doi":"10.1097/FBP.0000000000000738","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies had reported that compounds that stimulate microglia could be developed as potential drugs for the treatment of depression due to their reversal effect on depression-like behaviors in chronically stressed mice. Zymosan A is a cell wall preparation of Saccharomyces cerevisiae composed of β-glucans. Based on its immuno-stimulatory activities, we hypothesized that zymosan A might have a therapeutic effect on depression. Our results showed that a single injection of zymosan A 5 h before behavioral tests at a dose of 1 or 2 mg/kg, but not at a dose of 0.5 mg/kg, reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in mice in the tail suspension test, forced swimming test, and sucrose preference test. Time-dependent analysis showed that the antidepressant effect of zymosan A (2 mg/kg) in CUS mice became statistically significant at 5 and 8 h, but not at 3 h, and persisted for at least 7 days. Fourteen days after a single injection of zymosan A, no antidepressant effect was observed anymore. However, the disappeared antidepressant effect of zymosan A was restored by a second zymosan A injection (2 mg/kg, 5 h) 14 days after the first zymosan A injection. Stimulation of microglia was essential for the antidepressant effect of zymosan A because pre-inhibition of microglia by minocycline or pre-depletion of microglia by PLX3397 prevented the antidepressant effect of zymosan A. Based on these effects of zymosan A, zymosan A administration could be developed as a new strategy for the treatment of depression.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":"34 6","pages":"318-329"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000738","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies had reported that compounds that stimulate microglia could be developed as potential drugs for the treatment of depression due to their reversal effect on depression-like behaviors in chronically stressed mice. Zymosan A is a cell wall preparation of Saccharomyces cerevisiae composed of β-glucans. Based on its immuno-stimulatory activities, we hypothesized that zymosan A might have a therapeutic effect on depression. Our results showed that a single injection of zymosan A 5 h before behavioral tests at a dose of 1 or 2 mg/kg, but not at a dose of 0.5 mg/kg, reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in mice in the tail suspension test, forced swimming test, and sucrose preference test. Time-dependent analysis showed that the antidepressant effect of zymosan A (2 mg/kg) in CUS mice became statistically significant at 5 and 8 h, but not at 3 h, and persisted for at least 7 days. Fourteen days after a single injection of zymosan A, no antidepressant effect was observed anymore. However, the disappeared antidepressant effect of zymosan A was restored by a second zymosan A injection (2 mg/kg, 5 h) 14 days after the first zymosan A injection. Stimulation of microglia was essential for the antidepressant effect of zymosan A because pre-inhibition of microglia by minocycline or pre-depletion of microglia by PLX3397 prevented the antidepressant effect of zymosan A. Based on these effects of zymosan A, zymosan A administration could be developed as a new strategy for the treatment of depression.
期刊介绍:
Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.