Vignesh Vudatha, Kelly M Herremans, Devon C Freudenberger, Christopher Liu, Jose G Trevino
{"title":"胰腺导管腺癌体内模型。","authors":"Vignesh Vudatha, Kelly M Herremans, Devon C Freudenberger, Christopher Liu, Jose G Trevino","doi":"10.1016/bs.acr.2023.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality rate. Within the next decade, PDAC is projected to become the second leading cause of cancer-associated death in the United States. Understanding the pathophysiology of PDAC tumorigenesis and metastases is crucial toward developing new therapeutics. One of the challenges in cancer research is generating in vivo models that closely recapitulate the genomic, histological, and clinical characteristics of human tumors. An ideal model for PDAC not only captures the tumor and stromal environment of human disease, but also allows for mutational control and is easy to reproduce in terms of time and cost. In this review, we highlight evolution of in vivo models for PDAC including spontaneous tumors models (i.e., chemical induction, genetic modification, viral delivery), implantation models including patient derived xenografts (PDX), and humanized PDX. We discuss the implementation of each system and evaluate the benefits and shortcomings of these models. Overall, this review provides a broad overview of prior and current techniques of in vivo PDAC modeling and their associated challenges.</p>","PeriodicalId":50875,"journal":{"name":"Advances in Cancer Research","volume":"159 ","pages":"75-112"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo models of pancreatic ductal adenocarcinoma.\",\"authors\":\"Vignesh Vudatha, Kelly M Herremans, Devon C Freudenberger, Christopher Liu, Jose G Trevino\",\"doi\":\"10.1016/bs.acr.2023.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality rate. Within the next decade, PDAC is projected to become the second leading cause of cancer-associated death in the United States. Understanding the pathophysiology of PDAC tumorigenesis and metastases is crucial toward developing new therapeutics. One of the challenges in cancer research is generating in vivo models that closely recapitulate the genomic, histological, and clinical characteristics of human tumors. An ideal model for PDAC not only captures the tumor and stromal environment of human disease, but also allows for mutational control and is easy to reproduce in terms of time and cost. In this review, we highlight evolution of in vivo models for PDAC including spontaneous tumors models (i.e., chemical induction, genetic modification, viral delivery), implantation models including patient derived xenografts (PDX), and humanized PDX. We discuss the implementation of each system and evaluate the benefits and shortcomings of these models. Overall, this review provides a broad overview of prior and current techniques of in vivo PDAC modeling and their associated challenges.</p>\",\"PeriodicalId\":50875,\"journal\":{\"name\":\"Advances in Cancer Research\",\"volume\":\"159 \",\"pages\":\"75-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.acr.2023.02.002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.acr.2023.02.002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
In vivo models of pancreatic ductal adenocarcinoma.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality rate. Within the next decade, PDAC is projected to become the second leading cause of cancer-associated death in the United States. Understanding the pathophysiology of PDAC tumorigenesis and metastases is crucial toward developing new therapeutics. One of the challenges in cancer research is generating in vivo models that closely recapitulate the genomic, histological, and clinical characteristics of human tumors. An ideal model for PDAC not only captures the tumor and stromal environment of human disease, but also allows for mutational control and is easy to reproduce in terms of time and cost. In this review, we highlight evolution of in vivo models for PDAC including spontaneous tumors models (i.e., chemical induction, genetic modification, viral delivery), implantation models including patient derived xenografts (PDX), and humanized PDX. We discuss the implementation of each system and evaluate the benefits and shortcomings of these models. Overall, this review provides a broad overview of prior and current techniques of in vivo PDAC modeling and their associated challenges.
期刊介绍:
Advances in Cancer Research (ACR) has covered a remarkable period of discovery that encompasses the beginning of the revolution in biology.
Advances in Cancer Research (ACR) has covered a remarkable period of discovery that encompasses the beginning of the revolution in biology. The first ACR volume came out in the year that Watson and Crick reported on the central dogma of biology, the DNA double helix. In the first 100 volumes are found many contributions by some of those who helped shape the revolution and who made many of the remarkable discoveries in cancer research that have developed from it.