基于神经影像的阿尔茨海默病快速检索分析。

Xiaofeng Zhu, Kim-Han Thung, Jun Zhang, Dinggang She
{"title":"基于神经影像的阿尔茨海默病快速检索分析。","authors":"Xiaofeng Zhu, Kim-Han Thung, Jun Zhang, Dinggang She","doi":"10.1007/978-3-319-47157-0_38","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a framework of fast neuroimaging-based retrieval and AD analysis, by three key steps: (1) <i>landmark detection</i>, which efficiently extracts landmark-based neuroimaging features without the need of nonlinear registration in testing stage; (2) <i>landmark selection</i>, which removes redundant/noisy landmarks via proposing a feature selection method that considers structural information among landmarks; and (3) <i>hashing</i>, which converts high-dimensional features of subjects into binary codes, for efficiently conducting approximate nearest neighbor search and diagnosis of AD. We have conducted experiments on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and demonstrated that our framework could achieve higher performance than the comparison methods, in terms of accuracy and speed (at least 100 times faster).</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"10019 ","pages":"313-321"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614455/pdf/nihms851222.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast Neuroimaging-Based Retrieval for Alzheimer's Disease Analysis.\",\"authors\":\"Xiaofeng Zhu, Kim-Han Thung, Jun Zhang, Dinggang She\",\"doi\":\"10.1007/978-3-319-47157-0_38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a framework of fast neuroimaging-based retrieval and AD analysis, by three key steps: (1) <i>landmark detection</i>, which efficiently extracts landmark-based neuroimaging features without the need of nonlinear registration in testing stage; (2) <i>landmark selection</i>, which removes redundant/noisy landmarks via proposing a feature selection method that considers structural information among landmarks; and (3) <i>hashing</i>, which converts high-dimensional features of subjects into binary codes, for efficiently conducting approximate nearest neighbor search and diagnosis of AD. We have conducted experiments on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and demonstrated that our framework could achieve higher performance than the comparison methods, in terms of accuracy and speed (at least 100 times faster).</p>\",\"PeriodicalId\":74092,\"journal\":{\"name\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"volume\":\"10019 \",\"pages\":\"313-321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614455/pdf/nihms851222.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-47157-0_38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-47157-0_38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/10/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过三个关键步骤提出了基于神经影像的快速检索和 AD 分析框架:(1) 地标检测:无需在测试阶段进行非线性配准,即可高效提取基于地标的神经影像特征;(2) 地标选择:通过提出一种考虑地标间结构信息的特征选择方法,去除冗余/噪声地标;(3) 散列:将受试者的高维特征转换为二进制代码,以高效进行近似近邻搜索和 AD 诊断。我们在阿尔茨海默病神经影像计划(ADNI)数据集上进行了实验,结果表明,我们的框架在准确性和速度方面(至少快 100 倍)都能达到比对比方法更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Neuroimaging-Based Retrieval for Alzheimer's Disease Analysis.

This paper proposes a framework of fast neuroimaging-based retrieval and AD analysis, by three key steps: (1) landmark detection, which efficiently extracts landmark-based neuroimaging features without the need of nonlinear registration in testing stage; (2) landmark selection, which removes redundant/noisy landmarks via proposing a feature selection method that considers structural information among landmarks; and (3) hashing, which converts high-dimensional features of subjects into binary codes, for efficiently conducting approximate nearest neighbor search and diagnosis of AD. We have conducted experiments on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and demonstrated that our framework could achieve higher performance than the comparison methods, in terms of accuracy and speed (at least 100 times faster).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images. Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. MoViT: Memorizing Vision Transformers for Medical Image Analysis. Robust Unsupervised Super-Resolution of Infant MRI via Dual-Modal Deep Image Prior. IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1