{"title":"便宜的便携式电成型巨型单层囊泡制备试剂盒。","authors":"Fatma Doğan Güzel, Jaspreet Kaur, Zahra Zendeh","doi":"10.1080/08982104.2022.2149777","DOIUrl":null,"url":null,"abstract":"<p><p>The membrane of a cell separates the internal and external media of the cell and contributes to a variety of important processes, including gradient maintenance and signal transduction. Synthetic lipid-made vesicles are commonly utilized as cell membrane model systems. These could be liposomes or giant unilamellar vesicles (GUVs) in most cases. Liposomes are typically less than 0.5 microns in size, limiting their use for most microscopy experiments. GUVs are a form of liposomes that ranges in size from 5 to 200 microns and are ideal for examining complex phase behaviors of biomembranes using the classical optical setting. This study details the step-by-step development of a portable, light and low-cost kit for generating GUVs by electroformation. Our kit contains an in-built electronic circuitry, and the GUV generation setup, consisting of 3 ITO-coated glasses with heating electrode connections. Approximately 600 µl of GUVs can be produced in one experiment, while the amount could be increased by changing the dimensions of the GUV generation setup. Finally, the originality of the study comes from the fact that many users from different fields unfamiliar with electronics can use our home-built cost-effective approach instead of their expensive commercial counterparts.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":"33 2","pages":"183-188"},"PeriodicalIF":3.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cheap portable electroformed giant unilamellar vesicles preparation kit.\",\"authors\":\"Fatma Doğan Güzel, Jaspreet Kaur, Zahra Zendeh\",\"doi\":\"10.1080/08982104.2022.2149777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The membrane of a cell separates the internal and external media of the cell and contributes to a variety of important processes, including gradient maintenance and signal transduction. Synthetic lipid-made vesicles are commonly utilized as cell membrane model systems. These could be liposomes or giant unilamellar vesicles (GUVs) in most cases. Liposomes are typically less than 0.5 microns in size, limiting their use for most microscopy experiments. GUVs are a form of liposomes that ranges in size from 5 to 200 microns and are ideal for examining complex phase behaviors of biomembranes using the classical optical setting. This study details the step-by-step development of a portable, light and low-cost kit for generating GUVs by electroformation. Our kit contains an in-built electronic circuitry, and the GUV generation setup, consisting of 3 ITO-coated glasses with heating electrode connections. Approximately 600 µl of GUVs can be produced in one experiment, while the amount could be increased by changing the dimensions of the GUV generation setup. Finally, the originality of the study comes from the fact that many users from different fields unfamiliar with electronics can use our home-built cost-effective approach instead of their expensive commercial counterparts.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":\"33 2\",\"pages\":\"183-188\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2022.2149777\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2022.2149777","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The membrane of a cell separates the internal and external media of the cell and contributes to a variety of important processes, including gradient maintenance and signal transduction. Synthetic lipid-made vesicles are commonly utilized as cell membrane model systems. These could be liposomes or giant unilamellar vesicles (GUVs) in most cases. Liposomes are typically less than 0.5 microns in size, limiting their use for most microscopy experiments. GUVs are a form of liposomes that ranges in size from 5 to 200 microns and are ideal for examining complex phase behaviors of biomembranes using the classical optical setting. This study details the step-by-step development of a portable, light and low-cost kit for generating GUVs by electroformation. Our kit contains an in-built electronic circuitry, and the GUV generation setup, consisting of 3 ITO-coated glasses with heating electrode connections. Approximately 600 µl of GUVs can be produced in one experiment, while the amount could be increased by changing the dimensions of the GUV generation setup. Finally, the originality of the study comes from the fact that many users from different fields unfamiliar with electronics can use our home-built cost-effective approach instead of their expensive commercial counterparts.
期刊介绍:
The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society.
The scope of the Journal includes:
Formulation and characterisation of systems
Formulation engineering of systems
Synthetic and physical lipid chemistry
Lipid Biology
Biomembranes
Vaccines
Emerging technologies and systems related to liposomes and vesicle type systems
Developmental methodologies and new analytical techniques pertaining to the general area
Pharmacokinetics, pharmacodynamics and biodistribution of systems
Clinical applications.
The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.