{"title":"衰老和肌萎缩侧索硬化症中的运动神经元损失:不同的融合长度,相同的爆炸。","authors":"Matthew J Fogarty, Alyssa D Brown, Gary C Sieck","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced age and amyotrophic lateral sclerosis (ALS) are both associated with a loss of motor neurons resulting in muscle fiber atrophy and muscle weakness. Aging associated muscle fiber atrophy and weakening is termed sarcopenia, but the association with motor neuron loss is not as clearly established as in ALS, probably related to the prolonged time course of aging-related changes. Although aging and ALS effects on limb muscle strength and neuromotor performance are serious, such effects on the diaphragm muscle can be life threatening. Converging evidence indicates that larger phrenic motor neurons, innervating more fatigable type IIx and/or IIb diaphragm muscle fibers (fast fatigue intermediate, FInt and fast fatigable, FF motor units) are more susceptible to degeneration with both aging and ALS compared to smaller phrenic motor neurons innervating type I and IIa diaphragm muscle fibers (slow and fast fatigue resistant motor units, respectively). The etiology of ALS and age-related loss of motor neurons appears to involve mitochondrial function and neuroinflammation, both chronic and acute exacerbation. How mitochondrial dysfunction, neuroinflammation and motor neuron size intersect is the focus of continuing investigation.</p>","PeriodicalId":74449,"journal":{"name":"Physiological mini-reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416778/pdf/nihms-1921849.pdf","citationCount":"0","resultStr":"{\"title\":\"MOTOR NEURON LOSS IN AGING AND AMYOTROPHIC LATERAL SCLEROSIS: DIFFERENT FUSE LENGTHS, SAME EXPLOSION.\",\"authors\":\"Matthew J Fogarty, Alyssa D Brown, Gary C Sieck\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced age and amyotrophic lateral sclerosis (ALS) are both associated with a loss of motor neurons resulting in muscle fiber atrophy and muscle weakness. Aging associated muscle fiber atrophy and weakening is termed sarcopenia, but the association with motor neuron loss is not as clearly established as in ALS, probably related to the prolonged time course of aging-related changes. Although aging and ALS effects on limb muscle strength and neuromotor performance are serious, such effects on the diaphragm muscle can be life threatening. Converging evidence indicates that larger phrenic motor neurons, innervating more fatigable type IIx and/or IIb diaphragm muscle fibers (fast fatigue intermediate, FInt and fast fatigable, FF motor units) are more susceptible to degeneration with both aging and ALS compared to smaller phrenic motor neurons innervating type I and IIa diaphragm muscle fibers (slow and fast fatigue resistant motor units, respectively). The etiology of ALS and age-related loss of motor neurons appears to involve mitochondrial function and neuroinflammation, both chronic and acute exacerbation. How mitochondrial dysfunction, neuroinflammation and motor neuron size intersect is the focus of continuing investigation.</p>\",\"PeriodicalId\":74449,\"journal\":{\"name\":\"Physiological mini-reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416778/pdf/nihms-1921849.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological mini-reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological mini-reviews","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MOTOR NEURON LOSS IN AGING AND AMYOTROPHIC LATERAL SCLEROSIS: DIFFERENT FUSE LENGTHS, SAME EXPLOSION.
Advanced age and amyotrophic lateral sclerosis (ALS) are both associated with a loss of motor neurons resulting in muscle fiber atrophy and muscle weakness. Aging associated muscle fiber atrophy and weakening is termed sarcopenia, but the association with motor neuron loss is not as clearly established as in ALS, probably related to the prolonged time course of aging-related changes. Although aging and ALS effects on limb muscle strength and neuromotor performance are serious, such effects on the diaphragm muscle can be life threatening. Converging evidence indicates that larger phrenic motor neurons, innervating more fatigable type IIx and/or IIb diaphragm muscle fibers (fast fatigue intermediate, FInt and fast fatigable, FF motor units) are more susceptible to degeneration with both aging and ALS compared to smaller phrenic motor neurons innervating type I and IIa diaphragm muscle fibers (slow and fast fatigue resistant motor units, respectively). The etiology of ALS and age-related loss of motor neurons appears to involve mitochondrial function and neuroinflammation, both chronic and acute exacerbation. How mitochondrial dysfunction, neuroinflammation and motor neuron size intersect is the focus of continuing investigation.