墨西哥COVID-19大流行期间革兰氏阴性菌碳青霉烯酶编码基因和粘菌素耐药性:来自Invifar网络的结果

IF 2.3 4区 医学 Q3 INFECTIOUS DISEASES Microbial drug resistance Pub Date : 2023-06-01 DOI:10.1089/mdr.2022.0226
Ulises Garza-Ramos, Jesús Silva-Sánchez, Luis Esaú López-Jácome, Melissa Hernández-Durán, Claudia Adriana Colín-Castro, Alejandro Sánchez-Pérez, Jonathan Rodríguez-Santiago, Rayo Morfín-Otero, Eduardo Rodriguez-Noriega, María-Del-Consuelo Velázquez-Acosta, María Del Rosario Vázquez-Larios, José Manuel Feliciano-Guzmán, Fabián Rojas-Larios, Alfredo Ponce-De-Leon, Margarita Lozano-Garcia, Elena Victoria Choy-Chang, Eduardo López-Gutiérrez, Aarón Molina-Jaimes, Mariana Gil-Veloz, Reyna Edith Corte-Rojas, Ismelda López-Ovilla, Jose Luis Ramirez-Mis, Dora Elia Rodríguez-Balderas, Alejandro Molina-Chavarria, Cecilia Padilla-Ibarra, Maria Angelina Quevedo-Ramos, Christian Daniel Mireles-Dávalos, Nadia Rodríguez-Medina, Daira Rubio-Mendoza, Carlos Córdova-Fletes, Flora Cruz-López, Dilva Angelina Becerra-Montejano, Roberto Mercado-Longoria, Rebeca Thelma Martínez-Villarreal, Nicolás Rogelio Eric Barlandas-Rendón, Juan Pablo Mena-Ramírez, Carlos Antonio Couoh-May, Margarita Alcaraz-Espejel, César Adame-Alvarez, Lourdes Hernández-Vicente, Elvira Garza-González
{"title":"墨西哥COVID-19大流行期间革兰氏阴性菌碳青霉烯酶编码基因和粘菌素耐药性:来自Invifar网络的结果","authors":"Ulises Garza-Ramos,&nbsp;Jesús Silva-Sánchez,&nbsp;Luis Esaú López-Jácome,&nbsp;Melissa Hernández-Durán,&nbsp;Claudia Adriana Colín-Castro,&nbsp;Alejandro Sánchez-Pérez,&nbsp;Jonathan Rodríguez-Santiago,&nbsp;Rayo Morfín-Otero,&nbsp;Eduardo Rodriguez-Noriega,&nbsp;María-Del-Consuelo Velázquez-Acosta,&nbsp;María Del Rosario Vázquez-Larios,&nbsp;José Manuel Feliciano-Guzmán,&nbsp;Fabián Rojas-Larios,&nbsp;Alfredo Ponce-De-Leon,&nbsp;Margarita Lozano-Garcia,&nbsp;Elena Victoria Choy-Chang,&nbsp;Eduardo López-Gutiérrez,&nbsp;Aarón Molina-Jaimes,&nbsp;Mariana Gil-Veloz,&nbsp;Reyna Edith Corte-Rojas,&nbsp;Ismelda López-Ovilla,&nbsp;Jose Luis Ramirez-Mis,&nbsp;Dora Elia Rodríguez-Balderas,&nbsp;Alejandro Molina-Chavarria,&nbsp;Cecilia Padilla-Ibarra,&nbsp;Maria Angelina Quevedo-Ramos,&nbsp;Christian Daniel Mireles-Dávalos,&nbsp;Nadia Rodríguez-Medina,&nbsp;Daira Rubio-Mendoza,&nbsp;Carlos Córdova-Fletes,&nbsp;Flora Cruz-López,&nbsp;Dilva Angelina Becerra-Montejano,&nbsp;Roberto Mercado-Longoria,&nbsp;Rebeca Thelma Martínez-Villarreal,&nbsp;Nicolás Rogelio Eric Barlandas-Rendón,&nbsp;Juan Pablo Mena-Ramírez,&nbsp;Carlos Antonio Couoh-May,&nbsp;Margarita Alcaraz-Espejel,&nbsp;César Adame-Alvarez,&nbsp;Lourdes Hernández-Vicente,&nbsp;Elvira Garza-González","doi":"10.1089/mdr.2022.0226","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we report the carbapenemase-encoding genes and colistin resistance in <i>Escherichia coli</i>, <i>Klebsiella pneumoniae</i>, <i>Acinetobacter baumannii</i>, and <i>Pseudomonas aeruginosa</i> in the second year of the COVID-19 pandemic. Clinical isolates included carbapenem-resistant <i>K. pneumoniae</i>, carbapenem-resistant <i>E. coli</i>, carbapenem-resistant <i>A. baumannii</i>, and carbapenem-resistant <i>P. aeruginosa</i>. Carbapenemase-encoding genes were detected by PCR. Carbapenem-resistant <i>K. pneumoniae</i> and carbapenem-resistant <i>E. coli</i> isolates were analyzed using the Rapid Polymyxin NP assay. <i>mcr</i> genes were screened by PCR. Pulsed-field gel electrophoresis and whole-genome sequencing were performed on representative isolates. A total of 80 carbapenem-resistant <i>E. coli</i>, 103 carbapenem-resistant <i>K. pneumoniae</i>, 284 carbapenem-resistant <i>A. baumannii</i>, and 129 carbapenem-resistant <i>P. aeruginosa</i> isolates were recovered. All carbapenem-resistant <i>E. coli</i> and carbapenem-resistant <i>K. pneumoniae</i> isolates were included for further analysis. A selection of carbapenem-resistant <i>A. baumannii</i> and carbapenem-resistant <i>P. aeruginosa</i> strains was further analyzed (86 carbapenem-resistant <i>A. baumannii</i> and 82 carbapenem-resistant <i>P. aeruginosa</i>). Among carbapenem-resistant <i>K. pneumoniae</i> and carbapenem-resistant <i>E. coli</i> isolates, the most frequent gene was <i>bla</i><sub>NDM</sub> (86/103 [83.5%] and 72/80 [90%], respectively). For carbapenem-resistant <i>A. baumannii</i>, the most frequently detected gene was <i>bla</i><sub>OXA-40</sub> (52/86, 60.5%), and for carbapenem-resistant <i>P. aeruginosa</i>, was <i>bla</i><sub>VIM</sub> (19/82, 23.2%). For carbapenem-resistant <i>A. baumannii</i>, five indistinguishable pulsotypes were detected. Circulation of <i>K. pneumoniae</i> New Delhi metallo-β-lactamase (NDM) and <i>E. coli</i> NDM was detected in Mexico. High virulence sequence types (STs), such as <i>K. pneumoniae</i> ST307, <i>E. coli</i> ST167, <i>P. aeruginosa</i> ST111, and <i>A. baumannii</i> ST2, were detected. Among <i>K. pneumoniae</i> isolates, 18/101 (17.8%) were positive for the Polymyxin NP test (two, 11.0% positive for the <i>mcr-1</i> gene, and one, 5.6% with disruption of the <i>mgrB</i> gene). All <i>E. coli</i> isolates were negative for the Polymyxin NP test. In conclusion, <i>K. pneumoniae</i> NDM and <i>E. coli</i> NDM were detected in Mexico, with the circulation of highly virulent STs. These results are relevant in clinical practice to guide antibiotic therapies considering the molecular mechanisms of resistance to carbapenems.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":"29 6","pages":"239-248"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Carbapenemase-Encoding Genes and Colistin Resistance in Gram-Negative Bacteria During the COVID-19 Pandemic in Mexico: Results from the Invifar Network.\",\"authors\":\"Ulises Garza-Ramos,&nbsp;Jesús Silva-Sánchez,&nbsp;Luis Esaú López-Jácome,&nbsp;Melissa Hernández-Durán,&nbsp;Claudia Adriana Colín-Castro,&nbsp;Alejandro Sánchez-Pérez,&nbsp;Jonathan Rodríguez-Santiago,&nbsp;Rayo Morfín-Otero,&nbsp;Eduardo Rodriguez-Noriega,&nbsp;María-Del-Consuelo Velázquez-Acosta,&nbsp;María Del Rosario Vázquez-Larios,&nbsp;José Manuel Feliciano-Guzmán,&nbsp;Fabián Rojas-Larios,&nbsp;Alfredo Ponce-De-Leon,&nbsp;Margarita Lozano-Garcia,&nbsp;Elena Victoria Choy-Chang,&nbsp;Eduardo López-Gutiérrez,&nbsp;Aarón Molina-Jaimes,&nbsp;Mariana Gil-Veloz,&nbsp;Reyna Edith Corte-Rojas,&nbsp;Ismelda López-Ovilla,&nbsp;Jose Luis Ramirez-Mis,&nbsp;Dora Elia Rodríguez-Balderas,&nbsp;Alejandro Molina-Chavarria,&nbsp;Cecilia Padilla-Ibarra,&nbsp;Maria Angelina Quevedo-Ramos,&nbsp;Christian Daniel Mireles-Dávalos,&nbsp;Nadia Rodríguez-Medina,&nbsp;Daira Rubio-Mendoza,&nbsp;Carlos Córdova-Fletes,&nbsp;Flora Cruz-López,&nbsp;Dilva Angelina Becerra-Montejano,&nbsp;Roberto Mercado-Longoria,&nbsp;Rebeca Thelma Martínez-Villarreal,&nbsp;Nicolás Rogelio Eric Barlandas-Rendón,&nbsp;Juan Pablo Mena-Ramírez,&nbsp;Carlos Antonio Couoh-May,&nbsp;Margarita Alcaraz-Espejel,&nbsp;César Adame-Alvarez,&nbsp;Lourdes Hernández-Vicente,&nbsp;Elvira Garza-González\",\"doi\":\"10.1089/mdr.2022.0226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we report the carbapenemase-encoding genes and colistin resistance in <i>Escherichia coli</i>, <i>Klebsiella pneumoniae</i>, <i>Acinetobacter baumannii</i>, and <i>Pseudomonas aeruginosa</i> in the second year of the COVID-19 pandemic. Clinical isolates included carbapenem-resistant <i>K. pneumoniae</i>, carbapenem-resistant <i>E. coli</i>, carbapenem-resistant <i>A. baumannii</i>, and carbapenem-resistant <i>P. aeruginosa</i>. Carbapenemase-encoding genes were detected by PCR. Carbapenem-resistant <i>K. pneumoniae</i> and carbapenem-resistant <i>E. coli</i> isolates were analyzed using the Rapid Polymyxin NP assay. <i>mcr</i> genes were screened by PCR. Pulsed-field gel electrophoresis and whole-genome sequencing were performed on representative isolates. A total of 80 carbapenem-resistant <i>E. coli</i>, 103 carbapenem-resistant <i>K. pneumoniae</i>, 284 carbapenem-resistant <i>A. baumannii</i>, and 129 carbapenem-resistant <i>P. aeruginosa</i> isolates were recovered. All carbapenem-resistant <i>E. coli</i> and carbapenem-resistant <i>K. pneumoniae</i> isolates were included for further analysis. A selection of carbapenem-resistant <i>A. baumannii</i> and carbapenem-resistant <i>P. aeruginosa</i> strains was further analyzed (86 carbapenem-resistant <i>A. baumannii</i> and 82 carbapenem-resistant <i>P. aeruginosa</i>). Among carbapenem-resistant <i>K. pneumoniae</i> and carbapenem-resistant <i>E. coli</i> isolates, the most frequent gene was <i>bla</i><sub>NDM</sub> (86/103 [83.5%] and 72/80 [90%], respectively). For carbapenem-resistant <i>A. baumannii</i>, the most frequently detected gene was <i>bla</i><sub>OXA-40</sub> (52/86, 60.5%), and for carbapenem-resistant <i>P. aeruginosa</i>, was <i>bla</i><sub>VIM</sub> (19/82, 23.2%). For carbapenem-resistant <i>A. baumannii</i>, five indistinguishable pulsotypes were detected. Circulation of <i>K. pneumoniae</i> New Delhi metallo-β-lactamase (NDM) and <i>E. coli</i> NDM was detected in Mexico. High virulence sequence types (STs), such as <i>K. pneumoniae</i> ST307, <i>E. coli</i> ST167, <i>P. aeruginosa</i> ST111, and <i>A. baumannii</i> ST2, were detected. Among <i>K. pneumoniae</i> isolates, 18/101 (17.8%) were positive for the Polymyxin NP test (two, 11.0% positive for the <i>mcr-1</i> gene, and one, 5.6% with disruption of the <i>mgrB</i> gene). All <i>E. coli</i> isolates were negative for the Polymyxin NP test. In conclusion, <i>K. pneumoniae</i> NDM and <i>E. coli</i> NDM were detected in Mexico, with the circulation of highly virulent STs. These results are relevant in clinical practice to guide antibiotic therapies considering the molecular mechanisms of resistance to carbapenems.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\"29 6\",\"pages\":\"239-248\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2022.0226\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2022.0226","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 4

摘要

在这项研究中,我们报告了在2019冠状病毒病大流行的第二年,大肠杆菌、肺炎克雷伯菌、鲍曼不动杆菌和铜绿假单胞菌中碳青霉烯酶编码基因和粘菌素耐药性。临床分离株包括耐碳青霉烯肺炎克雷伯菌、耐碳青霉烯大肠杆菌、耐碳青霉烯鲍曼杆菌和耐碳青霉烯铜绿假单胞菌。PCR检测碳青霉烯酶编码基因。采用快速多粘菌素NP法对耐碳青霉烯肺炎克雷伯菌和耐碳青霉烯大肠杆菌分离株进行分析。PCR法筛选mcr基因。对代表性分离株进行了脉冲场凝胶电泳和全基因组测序。共回收耐碳青霉烯大肠杆菌80株、耐碳青霉烯肺炎克雷伯菌103株、耐碳青霉烯鲍曼不动杆菌284株、耐碳青霉烯铜绿假单胞菌129株。所有耐碳青霉烯的大肠杆菌和耐碳青霉烯的肺炎克雷伯菌被纳入进一步分析。进一步分析了耐碳青霉烯鲍曼假单胞菌和耐碳青霉烯铜绿假单胞菌的选种(耐碳青霉烯鲍曼假单胞菌86株和耐碳青霉烯铜绿假单胞菌82株)。耐碳青霉烯肺炎克雷伯菌和耐碳青霉烯大肠杆菌分离株中最常见的基因为blaNDM(分别为86/103[83.5%]和72/80[90%])。耐碳青霉烯鲍曼不动杆菌中检出最多的基因为blaOXA-40(52/ 86,60.5%),耐碳青霉烯铜绿假单胞菌中检出最多的基因为blaVIM(19/ 82,23.2%)。对于耐碳青霉烯鲍曼不动杆菌,检测到5种难以区分的脉冲型。墨西哥发现肺炎克雷伯菌新德里金属β-内酰胺酶(NDM)和大肠杆菌NDM流行。检测到肺炎克雷伯菌ST307、大肠杆菌ST167、铜绿假单胞菌ST111和鲍曼假单胞菌ST2等高毒力序列型。肺炎克雷伯菌多粘菌素NP试验阳性18/101例(17.8%),其中2例(11.0%)mcr-1基因阳性,1例(5.6%)mgrB基因断裂。所有大肠杆菌多粘菌素NP试验均为阴性。结论:墨西哥地区检测到肺炎克雷伯菌NDM和大肠杆菌NDM,并伴有高毒力STs的传播。这些结果对临床实践指导抗生素治疗考虑碳青霉烯类耐药的分子机制具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbapenemase-Encoding Genes and Colistin Resistance in Gram-Negative Bacteria During the COVID-19 Pandemic in Mexico: Results from the Invifar Network.

In this study, we report the carbapenemase-encoding genes and colistin resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa in the second year of the COVID-19 pandemic. Clinical isolates included carbapenem-resistant K. pneumoniae, carbapenem-resistant E. coli, carbapenem-resistant A. baumannii, and carbapenem-resistant P. aeruginosa. Carbapenemase-encoding genes were detected by PCR. Carbapenem-resistant K. pneumoniae and carbapenem-resistant E. coli isolates were analyzed using the Rapid Polymyxin NP assay. mcr genes were screened by PCR. Pulsed-field gel electrophoresis and whole-genome sequencing were performed on representative isolates. A total of 80 carbapenem-resistant E. coli, 103 carbapenem-resistant K. pneumoniae, 284 carbapenem-resistant A. baumannii, and 129 carbapenem-resistant P. aeruginosa isolates were recovered. All carbapenem-resistant E. coli and carbapenem-resistant K. pneumoniae isolates were included for further analysis. A selection of carbapenem-resistant A. baumannii and carbapenem-resistant P. aeruginosa strains was further analyzed (86 carbapenem-resistant A. baumannii and 82 carbapenem-resistant P. aeruginosa). Among carbapenem-resistant K. pneumoniae and carbapenem-resistant E. coli isolates, the most frequent gene was blaNDM (86/103 [83.5%] and 72/80 [90%], respectively). For carbapenem-resistant A. baumannii, the most frequently detected gene was blaOXA-40 (52/86, 60.5%), and for carbapenem-resistant P. aeruginosa, was blaVIM (19/82, 23.2%). For carbapenem-resistant A. baumannii, five indistinguishable pulsotypes were detected. Circulation of K. pneumoniae New Delhi metallo-β-lactamase (NDM) and E. coli NDM was detected in Mexico. High virulence sequence types (STs), such as K. pneumoniae ST307, E. coli ST167, P. aeruginosa ST111, and A. baumannii ST2, were detected. Among K. pneumoniae isolates, 18/101 (17.8%) were positive for the Polymyxin NP test (two, 11.0% positive for the mcr-1 gene, and one, 5.6% with disruption of the mgrB gene). All E. coli isolates were negative for the Polymyxin NP test. In conclusion, K. pneumoniae NDM and E. coli NDM were detected in Mexico, with the circulation of highly virulent STs. These results are relevant in clinical practice to guide antibiotic therapies considering the molecular mechanisms of resistance to carbapenems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial drug resistance
Microbial drug resistance 医学-传染病学
CiteScore
6.00
自引率
3.80%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports. MDR coverage includes: Molecular biology of resistance mechanisms Virulence genes and disease Molecular epidemiology Drug design Infection control.
期刊最新文献
In-Vitro Activity of Dimercaptosuccinic Acid in Combination with Carbapenems Against Carbapenem-Resistant Pseudomonas aeruginosa. A Selective Culture Medium for Screening Aztreonam-Avibactam Resistance in Enterobacterales and Pseudomonas aeruginosa. Deciphering the Resistome and Mobiolme of an Avian-Associated Enterococus faecalis ST249 Clone that Acquired Vancomycin Resistance Isolated from Neutropenic Patient in Tunisia. Spreading Ability of Tet(X)-Harboring Plasmid and Effect of Tetracyclines as a Selective Pressure. Emergence of Salmonella enterica Serovar Heidelberg Producing OXA 48 Carbapenemase in Eastern Algeria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1