抑制血管紧张素II型1受体可减少严重急性胰腺炎患者肠屏障的氧化应激损伤。

IF 2.7 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Kaohsiung Journal of Medical Sciences Pub Date : 2023-08-01 DOI:10.1002/kjm2.12692
Zhao-Yu Gao, Ying-Jian Jiang, Jiang Wang, Chang Li, Dian-Liang Zhang
{"title":"抑制血管紧张素II型1受体可减少严重急性胰腺炎患者肠屏障的氧化应激损伤。","authors":"Zhao-Yu Gao,&nbsp;Ying-Jian Jiang,&nbsp;Jiang Wang,&nbsp;Chang Li,&nbsp;Dian-Liang Zhang","doi":"10.1002/kjm2.12692","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal barrier injury is a common complication of severe acute pancreatitis (SAP), which is often accompanied by intestinal mucosal barrier injury and results in serious consequences. However, the exact mechanism remains unclear. We aimed to investigate whether angiotensin II type 1 receptor (AT1)-mediated oxidative stress is involved in SAP intestinal barrier injury and assessed the effects of inhibiting this pathway. The SAP model was established by retrograde bile duct injection of sodium taurocholate (5%). The rats were divided into three groups: the control group (SO), the SAP group (SAP), and the azilsartan intervention group (SAP + AZL). Serum amylase, lipase, and other indexes were measured to evaluate SAP severity in each group. Histopathological changes in the pancreas and intestine were evaluated by HE staining. The oxidative stress of intestinal epithelial cells was detected by superoxide dismutase and glutathione. We also detected the expression and distribution of intestinal barrier-related proteins. The results showed that the serum indexes, the severity of tissue damage, and the level of oxidative stress in the SAP + AZL group were significantly lower than in the SAP group. Our study provided hitherto undocumented evidence of AT1 expression in the intestinal mucosa, confirming that AT1-mediated oxidative stress is involved in SAP intestinal mucosal injury, and inhibiting this pathway could effectively reduce intestinal mucosal oxidative stress injury, providing a new and effective target for the treatment of SAP intestinal barrier injury.</p>","PeriodicalId":49946,"journal":{"name":"Kaohsiung Journal of Medical Sciences","volume":"39 8","pages":"824-833"},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of angiotensin II type 1 receptor reduces oxidative stress damage to the intestinal barrier in severe acute pancreatitis.\",\"authors\":\"Zhao-Yu Gao,&nbsp;Ying-Jian Jiang,&nbsp;Jiang Wang,&nbsp;Chang Li,&nbsp;Dian-Liang Zhang\",\"doi\":\"10.1002/kjm2.12692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intestinal barrier injury is a common complication of severe acute pancreatitis (SAP), which is often accompanied by intestinal mucosal barrier injury and results in serious consequences. However, the exact mechanism remains unclear. We aimed to investigate whether angiotensin II type 1 receptor (AT1)-mediated oxidative stress is involved in SAP intestinal barrier injury and assessed the effects of inhibiting this pathway. The SAP model was established by retrograde bile duct injection of sodium taurocholate (5%). The rats were divided into three groups: the control group (SO), the SAP group (SAP), and the azilsartan intervention group (SAP + AZL). Serum amylase, lipase, and other indexes were measured to evaluate SAP severity in each group. Histopathological changes in the pancreas and intestine were evaluated by HE staining. The oxidative stress of intestinal epithelial cells was detected by superoxide dismutase and glutathione. We also detected the expression and distribution of intestinal barrier-related proteins. The results showed that the serum indexes, the severity of tissue damage, and the level of oxidative stress in the SAP + AZL group were significantly lower than in the SAP group. Our study provided hitherto undocumented evidence of AT1 expression in the intestinal mucosa, confirming that AT1-mediated oxidative stress is involved in SAP intestinal mucosal injury, and inhibiting this pathway could effectively reduce intestinal mucosal oxidative stress injury, providing a new and effective target for the treatment of SAP intestinal barrier injury.</p>\",\"PeriodicalId\":49946,\"journal\":{\"name\":\"Kaohsiung Journal of Medical Sciences\",\"volume\":\"39 8\",\"pages\":\"824-833\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kaohsiung Journal of Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/kjm2.12692\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kaohsiung Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/kjm2.12692","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

肠屏障损伤是重症急性胰腺炎(SAP)的常见并发症,常伴有肠黏膜屏障损伤,后果严重。然而,确切的机制尚不清楚。我们旨在研究血管紧张素II型1受体(AT1)介导的氧化应激是否参与SAP肠屏障损伤,并评估抑制这一途径的效果。采用逆行胆管注射5%牛磺胆酸钠建立SAP模型。将大鼠分为三组:对照组(SO)、SAP组(SAP)和阿齐沙坦干预组(SAP + AZL)。测定血清淀粉酶、脂肪酶等指标评价各组SAP严重程度。HE染色观察胰腺、肠组织病理变化。采用超氧化物歧化酶和谷胱甘肽检测肠上皮细胞的氧化应激。我们还检测了肠屏障相关蛋白的表达和分布。结果表明,SAP + AZL组血清各项指标、组织损伤程度、氧化应激水平均显著低于SAP组。本研究提供了AT1在肠黏膜表达的证据,证实了AT1介导的氧化应激参与SAP肠黏膜损伤,抑制该通路可有效减轻肠黏膜氧化应激损伤,为SAP肠屏障损伤的治疗提供了新的有效靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inhibition of angiotensin II type 1 receptor reduces oxidative stress damage to the intestinal barrier in severe acute pancreatitis.

Intestinal barrier injury is a common complication of severe acute pancreatitis (SAP), which is often accompanied by intestinal mucosal barrier injury and results in serious consequences. However, the exact mechanism remains unclear. We aimed to investigate whether angiotensin II type 1 receptor (AT1)-mediated oxidative stress is involved in SAP intestinal barrier injury and assessed the effects of inhibiting this pathway. The SAP model was established by retrograde bile duct injection of sodium taurocholate (5%). The rats were divided into three groups: the control group (SO), the SAP group (SAP), and the azilsartan intervention group (SAP + AZL). Serum amylase, lipase, and other indexes were measured to evaluate SAP severity in each group. Histopathological changes in the pancreas and intestine were evaluated by HE staining. The oxidative stress of intestinal epithelial cells was detected by superoxide dismutase and glutathione. We also detected the expression and distribution of intestinal barrier-related proteins. The results showed that the serum indexes, the severity of tissue damage, and the level of oxidative stress in the SAP + AZL group were significantly lower than in the SAP group. Our study provided hitherto undocumented evidence of AT1 expression in the intestinal mucosa, confirming that AT1-mediated oxidative stress is involved in SAP intestinal mucosal injury, and inhibiting this pathway could effectively reduce intestinal mucosal oxidative stress injury, providing a new and effective target for the treatment of SAP intestinal barrier injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kaohsiung Journal of Medical Sciences
Kaohsiung Journal of Medical Sciences 医学-医学:研究与实验
CiteScore
5.60
自引率
3.00%
发文量
139
审稿时长
4-8 weeks
期刊介绍: Kaohsiung Journal of Medical Sciences (KJMS), is the official peer-reviewed open access publication of Kaohsiung Medical University, Taiwan. The journal was launched in 1985 to promote clinical and scientific research in the medical sciences in Taiwan, and to disseminate this research to the international community. It is published monthly by Wiley. KJMS aims to publish original research and review papers in all fields of medicine and related disciplines that are of topical interest to the medical profession. Authors are welcome to submit Perspectives, reviews, original articles, short communications, Correspondence and letters to the editor for consideration.
期刊最新文献
Retraction: Hong Liu, Shi-Ying Ren, Yan Qu, Cui Liu, Yi Zhang, Xiang Qing Li, Hong Ma. MiR-194-5p inhibited metastasis and EMT of nephroblastoma cells through targeting Crk. The Kaohsiung Journal of Medical Sciences, Volume 36, Issue 4 Apr 2020. Pages 265-273. https://doi.org/10.1002/kjm2.12180. Analysis of macular choroidal thickness in normal Taiwanese eyes by enhanced depth imaging optical coherence tomography. Bloodletting acupuncture on venules between BL60 and BL61 rapidly relieving a 4-month episode of low back pain. Mechanism of DYRK1a in myocardial ischemia-reperfusion injury by regulating ferroptosis of cardiomyocytes. Silenced LASP1 interacts with DNMT1 to promote TJP2 expression and attenuate articular cartilage injury in mice by suppressing TJP2 methylation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1