体外帕金森病模型中线粒体断裂的自动量化

Q2 Neuroscience Current Protocols in Neuroscience Pub Date : 2020-12-01 DOI:10.1002/cpns.105
Daniel J Rees, Luke Roberts, M Carla Carisi, Alwena H Morgan, M Rowan Brown, Jeffrey S Davies
{"title":"体外帕金森病模型中线粒体断裂的自动量化","authors":"Daniel J Rees,&nbsp;Luke Roberts,&nbsp;M Carla Carisi,&nbsp;Alwena H Morgan,&nbsp;M Rowan Brown,&nbsp;Jeffrey S Davies","doi":"10.1002/cpns.105","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal mitochondrial fragmentation is a phenotype exhibited in models of neurodegeneration such as Parkinson's disease. Delineating the dysfunction in mitochondrial dynamics found in diseased states can aid our understanding of underlying mechanisms of disease progression and possibly identify novel therapeutic approaches. Advances in microscopy and the availability of intuitive open-access software have accelerated the rate of image acquisition and analysis, respectively. These developments allow routine biology researchers to rapidly turn hypotheses into results. In this protocol, we describe the utilization of cell culture techniques, high-content imaging (HCI), and the subsequent open-source image analysis pipeline for the quantification of mitochondrial fragmentation in the context of a rotenone-based in vitro Parkinson's disease model. © 2020 The Authors. Basic Protocol 1: SN4741 neuron culture and treatment in a rotenone-based model of Parkinson's disease Basic Protocol 2: Identification of cell nuclei, measurement of mitochondrial membrane potential, and measurement of mitochondrial fragmentation in mouse-derived midbrain dopaminergic neurons.</p>","PeriodicalId":40016,"journal":{"name":"Current Protocols in Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpns.105","citationCount":"2","resultStr":"{\"title\":\"Automated Quantification of Mitochondrial Fragmentation in an In Vitro Parkinson's Disease Model.\",\"authors\":\"Daniel J Rees,&nbsp;Luke Roberts,&nbsp;M Carla Carisi,&nbsp;Alwena H Morgan,&nbsp;M Rowan Brown,&nbsp;Jeffrey S Davies\",\"doi\":\"10.1002/cpns.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal mitochondrial fragmentation is a phenotype exhibited in models of neurodegeneration such as Parkinson's disease. Delineating the dysfunction in mitochondrial dynamics found in diseased states can aid our understanding of underlying mechanisms of disease progression and possibly identify novel therapeutic approaches. Advances in microscopy and the availability of intuitive open-access software have accelerated the rate of image acquisition and analysis, respectively. These developments allow routine biology researchers to rapidly turn hypotheses into results. In this protocol, we describe the utilization of cell culture techniques, high-content imaging (HCI), and the subsequent open-source image analysis pipeline for the quantification of mitochondrial fragmentation in the context of a rotenone-based in vitro Parkinson's disease model. © 2020 The Authors. Basic Protocol 1: SN4741 neuron culture and treatment in a rotenone-based model of Parkinson's disease Basic Protocol 2: Identification of cell nuclei, measurement of mitochondrial membrane potential, and measurement of mitochondrial fragmentation in mouse-derived midbrain dopaminergic neurons.</p>\",\"PeriodicalId\":40016,\"journal\":{\"name\":\"Current Protocols in Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpns.105\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpns.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpns.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 2

摘要

神经元线粒体断裂是帕金森病等神经退行性疾病模型中表现出的一种表型。描述在患病状态下发现的线粒体动力学功能障碍可以帮助我们理解疾病进展的潜在机制,并可能确定新的治疗方法。显微镜技术的进步和直观的开放获取软件的可用性分别加快了图像采集和分析的速度。这些发展使常规生物学研究人员能够迅速将假设转化为结果。在本协议中,我们描述了利用细胞培养技术,高含量成像(HCI),以及随后的开源图像分析管道,在鱼藤酮为基础的体外帕金森病模型的背景下量化线粒体碎片。©2020作者。基本方案1:在基于鱼tenone的帕金森病模型中SN4741神经元的培养和治疗基本方案2:在小鼠来源的中脑多巴胺能神经元中鉴定细胞核、测量线粒体膜电位和测量线粒体断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Quantification of Mitochondrial Fragmentation in an In Vitro Parkinson's Disease Model.

Neuronal mitochondrial fragmentation is a phenotype exhibited in models of neurodegeneration such as Parkinson's disease. Delineating the dysfunction in mitochondrial dynamics found in diseased states can aid our understanding of underlying mechanisms of disease progression and possibly identify novel therapeutic approaches. Advances in microscopy and the availability of intuitive open-access software have accelerated the rate of image acquisition and analysis, respectively. These developments allow routine biology researchers to rapidly turn hypotheses into results. In this protocol, we describe the utilization of cell culture techniques, high-content imaging (HCI), and the subsequent open-source image analysis pipeline for the quantification of mitochondrial fragmentation in the context of a rotenone-based in vitro Parkinson's disease model. © 2020 The Authors. Basic Protocol 1: SN4741 neuron culture and treatment in a rotenone-based model of Parkinson's disease Basic Protocol 2: Identification of cell nuclei, measurement of mitochondrial membrane potential, and measurement of mitochondrial fragmentation in mouse-derived midbrain dopaminergic neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Neuroscience
Current Protocols in Neuroscience Neuroscience-Neuroscience (all)
自引率
0.00%
发文量
0
期刊介绍: Current Protocols in Neuroscience is a one-stop resource for finding and adapting the best models and methods for all types of neuroscience experiments. Updated every three months in all formats, CPNS is constantly evolving to keep pace with the very latest discoveries and developments. A year of these quarterly updates is included in the initial CPNS purchase price.
期刊最新文献
Simultaneous Ca2+ Imaging and Optogenetic Stimulation of Cortical Astrocytes in Adult Murine Brain Slices Automated Two-Chamber Operon ID/ED Task for Mice Automated Quantification of Mitochondrial Fragmentation in an In Vitro Parkinson's Disease Model. Whole-Brain Image Analysis and Anatomical Atlas 3D Generation Using MagellanMapper. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1