Samuel S Malheiros, Bruna E Nagay, Martinna M Bertolini, Erica D de Avila, Jamil A Shibli, João Gabriel S Souza, Valentim A R Barão
{"title":"生物材料工程表面控制多微生物牙种植体相关感染:关注疾病调节因子和涂层的发展。","authors":"Samuel S Malheiros, Bruna E Nagay, Martinna M Bertolini, Erica D de Avila, Jamil A Shibli, João Gabriel S Souza, Valentim A R Barão","doi":"10.1080/17434440.2023.2218547","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations.</p><p><strong>Areas covered: </strong>Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility.</p><p><strong>Expert opinion: </strong>Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.</p>","PeriodicalId":12330,"journal":{"name":"Expert Review of Medical Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development.\",\"authors\":\"Samuel S Malheiros, Bruna E Nagay, Martinna M Bertolini, Erica D de Avila, Jamil A Shibli, João Gabriel S Souza, Valentim A R Barão\",\"doi\":\"10.1080/17434440.2023.2218547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations.</p><p><strong>Areas covered: </strong>Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility.</p><p><strong>Expert opinion: </strong>Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.</p>\",\"PeriodicalId\":12330,\"journal\":{\"name\":\"Expert Review of Medical Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Medical Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17434440.2023.2218547\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Medical Devices","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17434440.2023.2218547","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development.
Introduction: Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations.
Areas covered: Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility.
Expert opinion: Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
期刊介绍:
The journal serves the device research community by providing a comprehensive body of high-quality information from leading experts, all subject to rigorous peer review. The Expert Review format is specially structured to optimize the value of the information to reader. Comprehensive coverage by each author in a key area of research or clinical practice is augmented by the following sections:
Expert commentary - a personal view on the most effective or promising strategies
Five-year view - a clear perspective of future prospects within a realistic timescale
Key issues - an executive summary cutting to the author''s most critical points
In addition to the Review program, each issue also features Medical Device Profiles - objective assessments of specific devices in development or clinical use to help inform clinical practice. There are also Perspectives - overviews highlighting areas of current debate and controversy, together with reports from the conference scene and invited Editorials.