J de Waard, A Bhattacharya, M T de Boer, B M van Hemel, M D Esajas, K M Vermeulen, G H de Bock, E Schuuring, G B A Wisman
{"title":"从基于人群的宫颈癌筛查计划中的 hrHPV 阳性自样本中确定甲基化面板作为检测 CIN3+ 的替代分流方法。","authors":"J de Waard, A Bhattacharya, M T de Boer, B M van Hemel, M D Esajas, K M Vermeulen, G H de Bock, E Schuuring, G B A Wisman","doi":"10.1186/s13148-023-01517-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Dutch population-based cervical cancer screening programme (PBS) consists of primary high-risk human papilloma virus (hrHPV) testing with cytology as triage test. In addition to cervical scraping by a general practitioner (GP), women are offered self-sampling to increase participation. Because cytological examination on self-sampled material is not feasible, collection of cervical samples from hrHPV-positive women by a GP is required. This study aims to design a methylation marker panel to detect CIN3 or worse (CIN3+) in hrHPV-positive self-samples from the Dutch PBS as an alternative triage test for cytology.</p><p><strong>Methods: </strong>Fifteen individual host DNA methylation markers with high sensitivity and specificity for CIN3+ were selected from literature and analysed using quantitative methylation-specific PCR (QMSP) on DNA from hrHPV-positive self-samples from 208 women with CIN2 or less (< CIN2) and 96 women with CIN3+. Diagnostic performance was determined by area under the curve (AUC) of receiver operating characteristic (ROC) analysis. Self-samples were divided into a train and test set. Hierarchical clustering analysis to identify input methylation markers, followed by model-based recursive partitioning and robustness analysis to construct a predictive model, was applied to design the best marker panel.</p><p><strong>Results: </strong>QMSP analysis of the 15 individual methylation markers showed discriminative DNA methylation levels between < CIN2 and CIN3+ for all markers (p < 0.05). The diagnostic performance analysis for CIN3+ showed an AUC of ≥ 0.7 (p < 0.001) for nine markers. Hierarchical clustering analysis resulted in seven clusters with methylation markers with similar methylation patterns (Spearman correlation> 0.5). Decision tree modeling revealed the best and most robust panel to contain ANKRD18CP, LHX8 and EPB41L3 with an AUC of 0.83 in the training set and 0.84 in the test set. Sensitivity to detect CIN3+ was 82% in the training set and 84% in the test set, with a specificity of 74% and 71%, respectively. Furthermore, all cancer cases (n = 5) were identified.</p><p><strong>Conclusion: </strong>The combination of ANKRD18CP, LHX8 and EPB41L3 revealed good diagnostic performance in real-life self-sampled material. This panel shows clinical applicability to replace cytology in women using self-sampling in the Dutch PBS programme and avoids the extra GP visit after a hrHPV-positive self-sampling test.</p>","PeriodicalId":48652,"journal":{"name":"Clinical Epigenetics","volume":"15 1","pages":"103"},"PeriodicalIF":5.7000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of a methylation panel as an alternative triage to detect CIN3+ in hrHPV-positive self-samples from the population-based cervical cancer screening programme.\",\"authors\":\"J de Waard, A Bhattacharya, M T de Boer, B M van Hemel, M D Esajas, K M Vermeulen, G H de Bock, E Schuuring, G B A Wisman\",\"doi\":\"10.1186/s13148-023-01517-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Dutch population-based cervical cancer screening programme (PBS) consists of primary high-risk human papilloma virus (hrHPV) testing with cytology as triage test. In addition to cervical scraping by a general practitioner (GP), women are offered self-sampling to increase participation. Because cytological examination on self-sampled material is not feasible, collection of cervical samples from hrHPV-positive women by a GP is required. This study aims to design a methylation marker panel to detect CIN3 or worse (CIN3+) in hrHPV-positive self-samples from the Dutch PBS as an alternative triage test for cytology.</p><p><strong>Methods: </strong>Fifteen individual host DNA methylation markers with high sensitivity and specificity for CIN3+ were selected from literature and analysed using quantitative methylation-specific PCR (QMSP) on DNA from hrHPV-positive self-samples from 208 women with CIN2 or less (< CIN2) and 96 women with CIN3+. Diagnostic performance was determined by area under the curve (AUC) of receiver operating characteristic (ROC) analysis. Self-samples were divided into a train and test set. Hierarchical clustering analysis to identify input methylation markers, followed by model-based recursive partitioning and robustness analysis to construct a predictive model, was applied to design the best marker panel.</p><p><strong>Results: </strong>QMSP analysis of the 15 individual methylation markers showed discriminative DNA methylation levels between < CIN2 and CIN3+ for all markers (p < 0.05). The diagnostic performance analysis for CIN3+ showed an AUC of ≥ 0.7 (p < 0.001) for nine markers. Hierarchical clustering analysis resulted in seven clusters with methylation markers with similar methylation patterns (Spearman correlation> 0.5). Decision tree modeling revealed the best and most robust panel to contain ANKRD18CP, LHX8 and EPB41L3 with an AUC of 0.83 in the training set and 0.84 in the test set. Sensitivity to detect CIN3+ was 82% in the training set and 84% in the test set, with a specificity of 74% and 71%, respectively. Furthermore, all cancer cases (n = 5) were identified.</p><p><strong>Conclusion: </strong>The combination of ANKRD18CP, LHX8 and EPB41L3 revealed good diagnostic performance in real-life self-sampled material. This panel shows clinical applicability to replace cytology in women using self-sampling in the Dutch PBS programme and avoids the extra GP visit after a hrHPV-positive self-sampling test.</p>\",\"PeriodicalId\":48652,\"journal\":{\"name\":\"Clinical Epigenetics\",\"volume\":\"15 1\",\"pages\":\"103\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epigenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13148-023-01517-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-023-01517-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Identification of a methylation panel as an alternative triage to detect CIN3+ in hrHPV-positive self-samples from the population-based cervical cancer screening programme.
Background: The Dutch population-based cervical cancer screening programme (PBS) consists of primary high-risk human papilloma virus (hrHPV) testing with cytology as triage test. In addition to cervical scraping by a general practitioner (GP), women are offered self-sampling to increase participation. Because cytological examination on self-sampled material is not feasible, collection of cervical samples from hrHPV-positive women by a GP is required. This study aims to design a methylation marker panel to detect CIN3 or worse (CIN3+) in hrHPV-positive self-samples from the Dutch PBS as an alternative triage test for cytology.
Methods: Fifteen individual host DNA methylation markers with high sensitivity and specificity for CIN3+ were selected from literature and analysed using quantitative methylation-specific PCR (QMSP) on DNA from hrHPV-positive self-samples from 208 women with CIN2 or less (< CIN2) and 96 women with CIN3+. Diagnostic performance was determined by area under the curve (AUC) of receiver operating characteristic (ROC) analysis. Self-samples were divided into a train and test set. Hierarchical clustering analysis to identify input methylation markers, followed by model-based recursive partitioning and robustness analysis to construct a predictive model, was applied to design the best marker panel.
Results: QMSP analysis of the 15 individual methylation markers showed discriminative DNA methylation levels between < CIN2 and CIN3+ for all markers (p < 0.05). The diagnostic performance analysis for CIN3+ showed an AUC of ≥ 0.7 (p < 0.001) for nine markers. Hierarchical clustering analysis resulted in seven clusters with methylation markers with similar methylation patterns (Spearman correlation> 0.5). Decision tree modeling revealed the best and most robust panel to contain ANKRD18CP, LHX8 and EPB41L3 with an AUC of 0.83 in the training set and 0.84 in the test set. Sensitivity to detect CIN3+ was 82% in the training set and 84% in the test set, with a specificity of 74% and 71%, respectively. Furthermore, all cancer cases (n = 5) were identified.
Conclusion: The combination of ANKRD18CP, LHX8 and EPB41L3 revealed good diagnostic performance in real-life self-sampled material. This panel shows clinical applicability to replace cytology in women using self-sampling in the Dutch PBS programme and avoids the extra GP visit after a hrHPV-positive self-sampling test.
Clinical EpigeneticsBiochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
8.90
自引率
5.30%
发文量
150
审稿时长
12 weeks
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.