{"title":"大鼠不完全脑缺血再灌注后海马脑血流量的长周期变化及其与焦虑样行为和炎症的关系。","authors":"Lan Fu, Lin-Na Guan","doi":"10.3233/CH-231770","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study was designed to summarize the changes of cerebral blood flow (CBF) in the bilateral hippocampal CA1 region of the hemorrhagic shock reperfusion (HSR) model of rats and their correlation with anxiety-like behavior and inflammation.</p><p><strong>Methods: </strong>Rats were randomly divided into the HSR group and the Sham group. 30 rats in each group were subdivided into 5 time points (1 w, 2 w, 4 w, 8 w, and 12 w) for examination. 3D-arterial spin labeling (3D-ASL) was performed. Long period anxiety-like behaviors were analyzed through the open field test. Histopathology was used to detect astrocytic activation in bilateral hippocampus. The concentrations of pro-inflammatory cytokines were analyzed by ELISA.</p><p><strong>Results: </strong>At 1, 2, 4, and 8 weeks, CBF in bilateral hippocampus CA1 area of the rats in the Sham group was significantly higher than the rats in the HSR group. The rats in the HSR group had significantly shorter total traveled distance, lower velocity, and less rearing counts than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8, and 12 weeks after the surgery had positive correlation with the total traveled distance, velocity, and rearing counts in the open field test. The rats in the HSR group had significantly higher GFAP intensity and the concentrations of IL-6, IL-1β, and TNF-α than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8 and 12 weeks after the surgery had significantly negative correlation with the GFAP intensity and the concentrations of IL-6, IL-1β, and TNF-α.</p><p><strong>Conclusion: </strong>In conclusion, CBF in bilateral hippocampus CA1 area, spatial exploration ability in rats with HSR were decreased while the astrocyte activation was enhanced. During the long period after the induction of HSR, the value of CBF in bilateral hippocampus CA1 area was proved to have significant correlation with anxiety-like behaviors and astrocyte activation.</p>","PeriodicalId":10425,"journal":{"name":"Clinical hemorheology and microcirculation","volume":" ","pages":"425-434"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long period changes of hippocampal cerebral blood flow and its correlation with anxiety-like behavior and inflammation after incomplete cerebral ischemia reperfusion in rats.\",\"authors\":\"Lan Fu, Lin-Na Guan\",\"doi\":\"10.3233/CH-231770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study was designed to summarize the changes of cerebral blood flow (CBF) in the bilateral hippocampal CA1 region of the hemorrhagic shock reperfusion (HSR) model of rats and their correlation with anxiety-like behavior and inflammation.</p><p><strong>Methods: </strong>Rats were randomly divided into the HSR group and the Sham group. 30 rats in each group were subdivided into 5 time points (1 w, 2 w, 4 w, 8 w, and 12 w) for examination. 3D-arterial spin labeling (3D-ASL) was performed. Long period anxiety-like behaviors were analyzed through the open field test. Histopathology was used to detect astrocytic activation in bilateral hippocampus. The concentrations of pro-inflammatory cytokines were analyzed by ELISA.</p><p><strong>Results: </strong>At 1, 2, 4, and 8 weeks, CBF in bilateral hippocampus CA1 area of the rats in the Sham group was significantly higher than the rats in the HSR group. The rats in the HSR group had significantly shorter total traveled distance, lower velocity, and less rearing counts than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8, and 12 weeks after the surgery had positive correlation with the total traveled distance, velocity, and rearing counts in the open field test. The rats in the HSR group had significantly higher GFAP intensity and the concentrations of IL-6, IL-1β, and TNF-α than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8 and 12 weeks after the surgery had significantly negative correlation with the GFAP intensity and the concentrations of IL-6, IL-1β, and TNF-α.</p><p><strong>Conclusion: </strong>In conclusion, CBF in bilateral hippocampus CA1 area, spatial exploration ability in rats with HSR were decreased while the astrocyte activation was enhanced. During the long period after the induction of HSR, the value of CBF in bilateral hippocampus CA1 area was proved to have significant correlation with anxiety-like behaviors and astrocyte activation.</p>\",\"PeriodicalId\":10425,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":\" \",\"pages\":\"425-434\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-231770\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CH-231770","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Long period changes of hippocampal cerebral blood flow and its correlation with anxiety-like behavior and inflammation after incomplete cerebral ischemia reperfusion in rats.
Objective: This study was designed to summarize the changes of cerebral blood flow (CBF) in the bilateral hippocampal CA1 region of the hemorrhagic shock reperfusion (HSR) model of rats and their correlation with anxiety-like behavior and inflammation.
Methods: Rats were randomly divided into the HSR group and the Sham group. 30 rats in each group were subdivided into 5 time points (1 w, 2 w, 4 w, 8 w, and 12 w) for examination. 3D-arterial spin labeling (3D-ASL) was performed. Long period anxiety-like behaviors were analyzed through the open field test. Histopathology was used to detect astrocytic activation in bilateral hippocampus. The concentrations of pro-inflammatory cytokines were analyzed by ELISA.
Results: At 1, 2, 4, and 8 weeks, CBF in bilateral hippocampus CA1 area of the rats in the Sham group was significantly higher than the rats in the HSR group. The rats in the HSR group had significantly shorter total traveled distance, lower velocity, and less rearing counts than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8, and 12 weeks after the surgery had positive correlation with the total traveled distance, velocity, and rearing counts in the open field test. The rats in the HSR group had significantly higher GFAP intensity and the concentrations of IL-6, IL-1β, and TNF-α than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8 and 12 weeks after the surgery had significantly negative correlation with the GFAP intensity and the concentrations of IL-6, IL-1β, and TNF-α.
Conclusion: In conclusion, CBF in bilateral hippocampus CA1 area, spatial exploration ability in rats with HSR were decreased while the astrocyte activation was enhanced. During the long period after the induction of HSR, the value of CBF in bilateral hippocampus CA1 area was proved to have significant correlation with anxiety-like behaviors and astrocyte activation.
期刊介绍:
Clinical Hemorheology and Microcirculation, a peer-reviewed international scientific journal, serves as an aid to understanding the flow properties of blood and the relationship to normal and abnormal physiology. The rapidly expanding science of hemorheology concerns blood, its components and the blood vessels with which blood interacts. It includes perihemorheology, i.e., the rheology of fluid and structures in the perivascular and interstitial spaces as well as the lymphatic system. The clinical aspects include pathogenesis, symptomatology and diagnostic methods, and the fields of prophylaxis and therapy in all branches of medicine and surgery, pharmacology and drug research.
The endeavour of the Editors-in-Chief and publishers of Clinical Hemorheology and Microcirculation is to bring together contributions from those working in various fields related to blood flow all over the world. The editors of Clinical Hemorheology and Microcirculation are from those countries in Europe, Asia, Australia and America where appreciable work in clinical hemorheology and microcirculation is being carried out. Each editor takes responsibility to decide on the acceptance of a manuscript. He is required to have the manuscript appraised by two referees and may be one of them himself. The executive editorial office, to which the manuscripts have been submitted, is responsible for rapid handling of the reviewing process.
Clinical Hemorheology and Microcirculation accepts original papers, brief communications, mini-reports and letters to the Editors-in-Chief. Review articles, providing general views and new insights into related subjects, are regularly invited by the Editors-in-Chief. Proceedings of international and national conferences on clinical hemorheology (in original form or as abstracts) complete the range of editorial features.