对乙酰氨基酚肝毒性后的再生与恢复。

Livers Pub Date : 2023-06-01 DOI:10.3390/livers3020021
Bharat Bhushan, Udayan Apte
{"title":"对乙酰氨基酚肝毒性后的再生与恢复。","authors":"Bharat Bhushan,&nbsp;Udayan Apte","doi":"10.3390/livers3020021","DOIUrl":null,"url":null,"abstract":"<p><p>Liver regeneration is a compensatory response to tissue injury and loss. It is known that liver regeneration plays a crucial role in recovery following acetaminophen (APAP)-induced hepatotoxicity, which is the major cause of acute liver failure (ALF) in the US. Regeneration increases proportional to the extent of liver injury upon APAP overdose, ultimately leading to regression of injury and spontaneous recovery in most cases. However, severe APAP overdose results in impaired liver regeneration and unchecked progression of liver injury, leading to failed recovery and mortality. Inter-communication between various cell types in the liver is important for effective regenerative response following APAP hepatotoxicity. Various non-parenchymal cells such macrophages, stellate cells, and endothelial cells produce mediators crucial for proliferation of hepatocytes. Liver regeneration is orchestrated by synchronized actions of several proliferative signaling pathways involving numerous kinases, nuclear receptors, transcription factors, transcriptional co-activators, which are activated by cytokines, growth factors, and endobiotics. Overt activation of anti-proliferative signaling pathways causes cell-cycle arrest and impaired liver regeneration after severe APAP overdose. Stimulating liver regeneration by activating proliferating signaling and suppressing anti-proliferative signaling in liver can prove to be important in developing novel therapeutics for APAP-induced ALF.</p>","PeriodicalId":74083,"journal":{"name":"Livers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regeneration and Recovery after Acetaminophen Hepatotoxicity.\",\"authors\":\"Bharat Bhushan,&nbsp;Udayan Apte\",\"doi\":\"10.3390/livers3020021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver regeneration is a compensatory response to tissue injury and loss. It is known that liver regeneration plays a crucial role in recovery following acetaminophen (APAP)-induced hepatotoxicity, which is the major cause of acute liver failure (ALF) in the US. Regeneration increases proportional to the extent of liver injury upon APAP overdose, ultimately leading to regression of injury and spontaneous recovery in most cases. However, severe APAP overdose results in impaired liver regeneration and unchecked progression of liver injury, leading to failed recovery and mortality. Inter-communication between various cell types in the liver is important for effective regenerative response following APAP hepatotoxicity. Various non-parenchymal cells such macrophages, stellate cells, and endothelial cells produce mediators crucial for proliferation of hepatocytes. Liver regeneration is orchestrated by synchronized actions of several proliferative signaling pathways involving numerous kinases, nuclear receptors, transcription factors, transcriptional co-activators, which are activated by cytokines, growth factors, and endobiotics. Overt activation of anti-proliferative signaling pathways causes cell-cycle arrest and impaired liver regeneration after severe APAP overdose. Stimulating liver regeneration by activating proliferating signaling and suppressing anti-proliferative signaling in liver can prove to be important in developing novel therapeutics for APAP-induced ALF.</p>\",\"PeriodicalId\":74083,\"journal\":{\"name\":\"Livers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Livers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/livers3020021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Livers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/livers3020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肝脏再生是对组织损伤和丧失的一种代偿性反应。众所周知,在美国,对乙酰氨基酚(APAP)引起的肝毒性是导致急性肝衰竭(ALF)的主要原因,肝脏再生在对乙酰氨基酚(APAP)引起的肝毒性恢复中起着至关重要的作用。APAP过量后肝再生与肝损伤程度成正比增加,多数情况下最终导致损伤消退和自发恢复。然而,严重的APAP过量会导致肝再生受损和肝损伤的不受控制的进展,导致恢复失败和死亡。肝内不同类型细胞之间的相互交流对于APAP肝毒性后有效的再生反应是重要的。各种非实质细胞如巨噬细胞、星状细胞和内皮细胞产生对肝细胞增殖至关重要的介质。肝脏再生是由多种增殖信号通路的同步作用精心安排的,这些信号通路涉及多种激酶、核受体、转录因子、转录共激活因子,这些信号通路由细胞因子、生长因子和内源性药物激活。严重APAP过量后,抗增殖信号通路的明显激活会导致细胞周期阻滞和肝脏再生受损。通过激活增殖信号和抑制肝脏中的抗增殖信号来刺激肝脏再生,对于开发apap诱导的ALF的新疗法是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regeneration and Recovery after Acetaminophen Hepatotoxicity.

Liver regeneration is a compensatory response to tissue injury and loss. It is known that liver regeneration plays a crucial role in recovery following acetaminophen (APAP)-induced hepatotoxicity, which is the major cause of acute liver failure (ALF) in the US. Regeneration increases proportional to the extent of liver injury upon APAP overdose, ultimately leading to regression of injury and spontaneous recovery in most cases. However, severe APAP overdose results in impaired liver regeneration and unchecked progression of liver injury, leading to failed recovery and mortality. Inter-communication between various cell types in the liver is important for effective regenerative response following APAP hepatotoxicity. Various non-parenchymal cells such macrophages, stellate cells, and endothelial cells produce mediators crucial for proliferation of hepatocytes. Liver regeneration is orchestrated by synchronized actions of several proliferative signaling pathways involving numerous kinases, nuclear receptors, transcription factors, transcriptional co-activators, which are activated by cytokines, growth factors, and endobiotics. Overt activation of anti-proliferative signaling pathways causes cell-cycle arrest and impaired liver regeneration after severe APAP overdose. Stimulating liver regeneration by activating proliferating signaling and suppressing anti-proliferative signaling in liver can prove to be important in developing novel therapeutics for APAP-induced ALF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
期刊最新文献
Targeting Autophagy for Acetaminophen-Induced Liver Injury: An Update. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. Lobar and Segmental Atrophy of the Liver: Differential Diagnoses and Treatments Obliterative Portal Venopathy during Estrogen Therapy in a Transgender Woman: A Case Report Understanding the Liver’s Role in the Clearance of Aβ40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1