pyCaverDock: Python实现的流行工具,用于分析配体传输,具有高级缓存和批处理计算支持。

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2023-08-01 DOI:10.1093/bioinformatics/btad443
Ondrej Vavra, Jakub Beranek, Jan Stourac, Martin Surkovsky, Jiri Filipovic, Jiri Damborsky, Jan Martinovic, David Bednar
{"title":"pyCaverDock: Python实现的流行工具,用于分析配体传输,具有高级缓存和批处理计算支持。","authors":"Ondrej Vavra,&nbsp;Jakub Beranek,&nbsp;Jan Stourac,&nbsp;Martin Surkovsky,&nbsp;Jiri Filipovic,&nbsp;Jiri Damborsky,&nbsp;Jan Martinovic,&nbsp;David Bednar","doi":"10.1093/bioinformatics/btad443","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Access pathways in enzymes are crucial for the passage of substrates and products of catalysed reactions. The process can be studied by computational means with variable degrees of precision. Our in-house approximative method CaverDock provides a fast and easy way to set up and run ligand binding and unbinding calculations through protein tunnels and channels. Here we introduce pyCaverDock, a Python3 API designed to improve user experience with the tool and further facilitate the ligand transport analyses. The API enables users to simplify the steps needed to use CaverDock, from automatizing setup processes to designing screening pipelines.</p><p><strong>Availability and implementation: </strong>pyCaverDock API is implemented in Python 3 and is freely available with detailed documentation and practical examples at https://loschmidt.chemi.muni.cz/caverdock/.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397418/pdf/","citationCount":"0","resultStr":"{\"title\":\"pyCaverDock: Python implementation of the popular tool for analysis of ligand transport with advanced caching and batch calculation support.\",\"authors\":\"Ondrej Vavra,&nbsp;Jakub Beranek,&nbsp;Jan Stourac,&nbsp;Martin Surkovsky,&nbsp;Jiri Filipovic,&nbsp;Jiri Damborsky,&nbsp;Jan Martinovic,&nbsp;David Bednar\",\"doi\":\"10.1093/bioinformatics/btad443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Access pathways in enzymes are crucial for the passage of substrates and products of catalysed reactions. The process can be studied by computational means with variable degrees of precision. Our in-house approximative method CaverDock provides a fast and easy way to set up and run ligand binding and unbinding calculations through protein tunnels and channels. Here we introduce pyCaverDock, a Python3 API designed to improve user experience with the tool and further facilitate the ligand transport analyses. The API enables users to simplify the steps needed to use CaverDock, from automatizing setup processes to designing screening pipelines.</p><p><strong>Availability and implementation: </strong>pyCaverDock API is implemented in Python 3 and is freely available with detailed documentation and practical examples at https://loschmidt.chemi.muni.cz/caverdock/.</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397418/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad443\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad443","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:酶的通路对催化反应的底物和产物的传递至关重要。这个过程可以用不同精度的计算方法来研究。我们的内部近似方法CaverDock提供了一种快速简便的方法,通过蛋白质通道和通道建立和运行配体结合和解结合计算。在这里,我们介绍pyCaverDock,这是一个Python3 API,旨在改善用户使用该工具的体验,并进一步促进配体传输分析。该API使用户能够简化使用CaverDock所需的步骤,从自动化设置过程到设计筛选管道。可用性和实现:pyCaverDock API是在Python 3中实现的,可以在https://loschmidt.chemi.muni.cz/caverdock/上免费获得详细的文档和实际示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pyCaverDock: Python implementation of the popular tool for analysis of ligand transport with advanced caching and batch calculation support.

Summary: Access pathways in enzymes are crucial for the passage of substrates and products of catalysed reactions. The process can be studied by computational means with variable degrees of precision. Our in-house approximative method CaverDock provides a fast and easy way to set up and run ligand binding and unbinding calculations through protein tunnels and channels. Here we introduce pyCaverDock, a Python3 API designed to improve user experience with the tool and further facilitate the ligand transport analyses. The API enables users to simplify the steps needed to use CaverDock, from automatizing setup processes to designing screening pipelines.

Availability and implementation: pyCaverDock API is implemented in Python 3 and is freely available with detailed documentation and practical examples at https://loschmidt.chemi.muni.cz/caverdock/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads Metabolic syndrome may be more frequent in treatment-naive sarcoidosis patients. Coracle—A Machine Learning Framework to Identify Bacteria Associated with Continuous Variables CoSIA: an R Bioconductor package for CrOss Species Investigation and Analysis LncLocFormer: a Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1