在猕猴(Macaca mulatta)模型中,非洲系寨卡病毒通过胎膜垂直传播。

IF 6.7 1区 医学 Q1 Immunology and Microbiology PLoS Pathogens Pub Date : 2023-08-07 eCollection Date: 2023-08-01 DOI:10.1371/journal.ppat.1011274
Michelle R Koenig, Ann M Mitzey, Xiankun Zeng, Leticia Reyes, Heather A Simmons, Terry K Morgan, Ellie K Bohm, Julia C Pritchard, Jenna A Schmidt, Emily Ren, Fernanda B Leyva Jaimes, Eva Winston, Puja Basu, Andrea M Weiler, Thomas C Friedrich, Matthew T Aliota, Emma L Mohr, Thaddeus G Golos
{"title":"在猕猴(Macaca mulatta)模型中,非洲系寨卡病毒通过胎膜垂直传播。","authors":"Michelle R Koenig, Ann M Mitzey, Xiankun Zeng, Leticia Reyes, Heather A Simmons, Terry K Morgan, Ellie K Bohm, Julia C Pritchard, Jenna A Schmidt, Emily Ren, Fernanda B Leyva Jaimes, Eva Winston, Puja Basu, Andrea M Weiler, Thomas C Friedrich, Matthew T Aliota, Emma L Mohr, Thaddeus G Golos","doi":"10.1371/journal.ppat.1011274","DOIUrl":null,"url":null,"abstract":"<p><p>Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.</p>","PeriodicalId":20178,"journal":{"name":"PLoS Pathogens","volume":"19 8","pages":"e1011274"},"PeriodicalIF":6.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vertical transmission of African-lineage Zika virus through the fetal membranes in a rhesus macaque (Macaca mulatta) model.\",\"authors\":\"Michelle R Koenig, Ann M Mitzey, Xiankun Zeng, Leticia Reyes, Heather A Simmons, Terry K Morgan, Ellie K Bohm, Julia C Pritchard, Jenna A Schmidt, Emily Ren, Fernanda B Leyva Jaimes, Eva Winston, Puja Basu, Andrea M Weiler, Thomas C Friedrich, Matthew T Aliota, Emma L Mohr, Thaddeus G Golos\",\"doi\":\"10.1371/journal.ppat.1011274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.</p>\",\"PeriodicalId\":20178,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"19 8\",\"pages\":\"e1011274\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1011274\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1011274","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

摘要

寨卡病毒(ZIKV)可在怀孕期间由母亲垂直传播给胎儿,导致一系列后果,包括严重的先天缺陷和胎儿/婴儿死亡。有人提出了子宫内垂直传播的潜在途径,但目前仍未确定。确定 ZIKV 垂直传播的时间和途径可能有助于我们确定干预措施何时最为有效。此外,了解 ZIKV 克服了哪些障碍以实现垂直传播可能有助于改进评估孕期感染其他病原体的模型。为了确定垂直传播的途径,我们在妊娠第 30 天(足月为 165 天)给 12 只猕猴接种了非洲系 ZIKV。八名孕妇在母体感染后 7 天或 14 天通过手术终止妊娠。收集母胎界面、胎儿组织和体液,并使用 RT-qPCR、原位杂交、免疫组化和斑块检测法对 ZIKV 进行评估。另外还接种了四只怀孕猕猴,并在母体接种后三、六、九或十天用 4% 多聚甲醛进行末端灌注。对这四例猕猴的整个固定妊娠子宫进行了 ZIKV RNA 原位杂交评估。我们确定,ZIKV 可在感染后六天到达 MFI,并在十天前感染胎儿。在胎儿和胎盘绒毛间质组织受到感染之前,绒毛膜和胚外联合体液也会受到感染。我们没有发现证据支持 ZIKV 通过合胞滋养细胞或绒毛滋养细胞感染的经胎盘垂直传播途径。在母胎界面观察到的感染模式提供了ZIKV通过胎膜外层绒毛膜进行胎盘旁垂直传播的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertical transmission of African-lineage Zika virus through the fetal membranes in a rhesus macaque (Macaca mulatta) model.

Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens 生物-病毒学
CiteScore
11.40
自引率
3.00%
发文量
598
审稿时长
2 months
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
期刊最新文献
Glaesserella parasuis serotype 4 exploits fibronectin via RlpA for tracheal colonization following porcine circovirus type 2 infection Turning the needle into the haystack: Culture-independent amplification of complex microbial genomes directly from their native environment Drivers of diversification in fungal pathogen populations α-Synuclein strain propagation is independent of cellular prion protein expression in a transgenic synucleinopathy mouse model A comprehensive study of SARS-CoV-2 mfigain protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1