Giorgia Cona, Martin Wiener, Francesco Allegrini, Cristina Scarpazza
{"title":"大脑中空间、时间和数字的梯度组织:神经成像研究的元分析》。","authors":"Giorgia Cona, Martin Wiener, Francesco Allegrini, Cristina Scarpazza","doi":"10.1007/s11065-023-09609-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we ran a meta-analysis of neuroimaging studies to pinpoint the neural regions that are commonly activated across space, time, and numerosity, and we tested the existence of gradient transitions among these magnitude representations in the brain. Following PRISMA guidelines, we included in the meta-analysis 112 experiments (for space domain), 114 experiments (time domain), and 115 experiments (numerosity domain), and we used the activation likelihood estimation method. We found a system of brain regions that was commonly recruited in all the three magnitudes, which included bilateral insula, the supplementary motor area (SMA), the right inferior frontal gyrus, and bilateral intraparietal sulci. Gradiental transitions between different magnitudes were found along all these regions but insulae, with space and numbers leading to gradients mainly over parietal regions (and SMA) whereas time and numbers mainly over frontal regions. These findings provide evidence for the GradiATOM theory (Gradient Theory of Magnitude), suggesting that spatial proximity given by overlapping activations and gradients is a key aspect for efficient interactions and integrations among magnitudes.</p>","PeriodicalId":49754,"journal":{"name":"Neuropsychology Review","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478975/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gradient Organization of Space, Time, and Numbers in the Brain: A Meta-analysis of Neuroimaging Studies.\",\"authors\":\"Giorgia Cona, Martin Wiener, Francesco Allegrini, Cristina Scarpazza\",\"doi\":\"10.1007/s11065-023-09609-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we ran a meta-analysis of neuroimaging studies to pinpoint the neural regions that are commonly activated across space, time, and numerosity, and we tested the existence of gradient transitions among these magnitude representations in the brain. Following PRISMA guidelines, we included in the meta-analysis 112 experiments (for space domain), 114 experiments (time domain), and 115 experiments (numerosity domain), and we used the activation likelihood estimation method. We found a system of brain regions that was commonly recruited in all the three magnitudes, which included bilateral insula, the supplementary motor area (SMA), the right inferior frontal gyrus, and bilateral intraparietal sulci. Gradiental transitions between different magnitudes were found along all these regions but insulae, with space and numbers leading to gradients mainly over parietal regions (and SMA) whereas time and numbers mainly over frontal regions. These findings provide evidence for the GradiATOM theory (Gradient Theory of Magnitude), suggesting that spatial proximity given by overlapping activations and gradients is a key aspect for efficient interactions and integrations among magnitudes.</p>\",\"PeriodicalId\":49754,\"journal\":{\"name\":\"Neuropsychology Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478975/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychology Review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11065-023-09609-z\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychology Review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11065-023-09609-z","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Gradient Organization of Space, Time, and Numbers in the Brain: A Meta-analysis of Neuroimaging Studies.
In this study, we ran a meta-analysis of neuroimaging studies to pinpoint the neural regions that are commonly activated across space, time, and numerosity, and we tested the existence of gradient transitions among these magnitude representations in the brain. Following PRISMA guidelines, we included in the meta-analysis 112 experiments (for space domain), 114 experiments (time domain), and 115 experiments (numerosity domain), and we used the activation likelihood estimation method. We found a system of brain regions that was commonly recruited in all the three magnitudes, which included bilateral insula, the supplementary motor area (SMA), the right inferior frontal gyrus, and bilateral intraparietal sulci. Gradiental transitions between different magnitudes were found along all these regions but insulae, with space and numbers leading to gradients mainly over parietal regions (and SMA) whereas time and numbers mainly over frontal regions. These findings provide evidence for the GradiATOM theory (Gradient Theory of Magnitude), suggesting that spatial proximity given by overlapping activations and gradients is a key aspect for efficient interactions and integrations among magnitudes.
期刊介绍:
Neuropsychology Review is a quarterly, refereed publication devoted to integrative review papers on substantive content areas in neuropsychology, with particular focus on populations with endogenous or acquired conditions affecting brain and function and on translational research providing a mechanistic understanding of clinical problems. Publication of new data is not the purview of the journal. Articles are written by international specialists in the field, discussing such complex issues as distinctive functional features of central nervous system disease and injury; challenges in early diagnosis; the impact of genes and environment on function; risk factors for functional impairment; treatment efficacy of neuropsychological rehabilitation; the role of neuroimaging, neuroelectrophysiology, and other neurometric modalities in explicating function; clinical trial design; neuropsychological function and its substrates characteristic of normal development and aging; and neuropsychological dysfunction and its substrates in neurological, psychiatric, and medical conditions. The journal''s broad perspective is supported by an outstanding, multidisciplinary editorial review board guided by the aim to provide students and professionals, clinicians and researchers with scholarly articles that critically and objectively summarize and synthesize the strengths and weaknesses in the literature and propose novel hypotheses, methods of analysis, and links to other fields.