{"title":"调节IL-33/ST2信号作为心血管疾病潜在的新治疗靶点","authors":"Punniyakoti Veeraveedu Thanikachalam , Srinivasan Ramamurthy , Poojitha Mallapu , Sudhir Rama Varma , Jayaraj Narayanan , Mohammed AS Abourehab , Prashant Kesharwani","doi":"10.1016/j.cytogfr.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>IL-33 belongs to the IL-1 family of cytokines, which function as inducers of Th2 cytokine production<span> by binding with ST2L and IL-1RAcP. This, in turn, activates various signaling pathways, including the mitogen-activated protein kinase (MAPK), the inhibitor of Kappa-B kinase (IKK) pathway, and the phospholipase </span></span><span>D</span><span><span><span>-sphingosine kinase pathway. IL-33 has demonstrated protective effects against various cardiovascular diseases (CVDs) by inducing Th2 cytokines and promoting alternative activating M2 polarization. However, the soluble decoy form of ST2 (sST2) mitigates the biological effects of IL-33, exacerbating CVDs. Furthermore, IL-33 also plays a significant role in the development of asthma, arthritis, atopic dermatitis, and </span>anaphylaxis through the activation of Th2 cells and mast cells. In this review, we aim to demonstrate the protective role of IL-33 against CVDs from 2005 to the present and explore the potential of serum soluble ST2 (sST2) as a diagnostic biomarker for CVDs. Therefore, IL-33 holds promise as a potential therapeutic target for the </span>treatment of CVDs.</span></p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"71 ","pages":"Pages 94-104"},"PeriodicalIF":9.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modulation of IL-33/ST2 signaling as a potential new therapeutic target for cardiovascular diseases\",\"authors\":\"Punniyakoti Veeraveedu Thanikachalam , Srinivasan Ramamurthy , Poojitha Mallapu , Sudhir Rama Varma , Jayaraj Narayanan , Mohammed AS Abourehab , Prashant Kesharwani\",\"doi\":\"10.1016/j.cytogfr.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>IL-33 belongs to the IL-1 family of cytokines, which function as inducers of Th2 cytokine production<span> by binding with ST2L and IL-1RAcP. This, in turn, activates various signaling pathways, including the mitogen-activated protein kinase (MAPK), the inhibitor of Kappa-B kinase (IKK) pathway, and the phospholipase </span></span><span>D</span><span><span><span>-sphingosine kinase pathway. IL-33 has demonstrated protective effects against various cardiovascular diseases (CVDs) by inducing Th2 cytokines and promoting alternative activating M2 polarization. However, the soluble decoy form of ST2 (sST2) mitigates the biological effects of IL-33, exacerbating CVDs. Furthermore, IL-33 also plays a significant role in the development of asthma, arthritis, atopic dermatitis, and </span>anaphylaxis through the activation of Th2 cells and mast cells. In this review, we aim to demonstrate the protective role of IL-33 against CVDs from 2005 to the present and explore the potential of serum soluble ST2 (sST2) as a diagnostic biomarker for CVDs. Therefore, IL-33 holds promise as a potential therapeutic target for the </span>treatment of CVDs.</span></p></div>\",\"PeriodicalId\":11132,\"journal\":{\"name\":\"Cytokine & Growth Factor Reviews\",\"volume\":\"71 \",\"pages\":\"Pages 94-104\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokine & Growth Factor Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359610123000266\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine & Growth Factor Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359610123000266","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Modulation of IL-33/ST2 signaling as a potential new therapeutic target for cardiovascular diseases
IL-33 belongs to the IL-1 family of cytokines, which function as inducers of Th2 cytokine production by binding with ST2L and IL-1RAcP. This, in turn, activates various signaling pathways, including the mitogen-activated protein kinase (MAPK), the inhibitor of Kappa-B kinase (IKK) pathway, and the phospholipase D-sphingosine kinase pathway. IL-33 has demonstrated protective effects against various cardiovascular diseases (CVDs) by inducing Th2 cytokines and promoting alternative activating M2 polarization. However, the soluble decoy form of ST2 (sST2) mitigates the biological effects of IL-33, exacerbating CVDs. Furthermore, IL-33 also plays a significant role in the development of asthma, arthritis, atopic dermatitis, and anaphylaxis through the activation of Th2 cells and mast cells. In this review, we aim to demonstrate the protective role of IL-33 against CVDs from 2005 to the present and explore the potential of serum soluble ST2 (sST2) as a diagnostic biomarker for CVDs. Therefore, IL-33 holds promise as a potential therapeutic target for the treatment of CVDs.
期刊介绍:
Cytokine & Growth Factor Reviews is a leading publication that focuses on the dynamic fields of growth factor and cytokine research. Our journal offers a platform for authors to disseminate thought-provoking articles such as critical reviews, state-of-the-art reviews, letters to the editor, and meeting reviews.
We aim to cover important breakthroughs in these rapidly evolving areas, providing valuable insights into the multidisciplinary significance of cytokines and growth factors. Our journal spans various domains including signal transduction, cell growth and differentiation, embryonic development, immunology, tumorigenesis, and clinical medicine.
By publishing cutting-edge research and analysis, we aim to influence the way researchers and experts perceive and understand growth factors and cytokines. We encourage novel expressions of ideas and innovative approaches to organizing content, fostering a stimulating environment for knowledge exchange and scientific advancement.