{"title":"Alstonia boonei茎皮水提物对Sprague Dawley大鼠有抗白内障作用。","authors":"Adwoa Frema Amanfo, Samuel Kyei, Yaw Duah Boakye, Clement Osei Akoto, Justice Kwaku Addo, Kofi Oduro Yeboah, Newman Osafo","doi":"10.1155/2023/5524137","DOIUrl":null,"url":null,"abstract":"<p><p>In Africa, <i>Alstonia boonei</i> is used folklorically for the management of the multitude of conditions including cataract, which accounts for 50% of cases of blindness in the region. The current study set out to probe the traditional use of the aqueous extract of <i>Alstonia boonei</i> stem bark (ABE) as an anticataract remedy using Sprague Dawley rat models. We investigated the probable phytochemical constituents in the extract, <i>in vitro</i> antioxidant potential, and its <i>in vitro</i> aldose reductase inhibition. For the anticataract investigations, diabetic cataract was induced using galactose in 3-week-old Sprague Dawley rats, and age-related cataract was induced by the administration of sodium selenite to 10-day-old rat pups. Cataract scores in both models were determined after treatment with 30, 100, and 300 mgkg<sup>-1</sup> doses of ABE and 10 mlkg<sup>-1</sup> of distilled water. Lens glutathione, total lens protein, soluble lens proteins (alpha-A) crystallin, and aquaporin 0 levels in the enucleated lens homogenates were determined. Changes in lens to body weight were also determined with histopathological analysis done on the lenses in the selenite-induced cataract model. The presence of alkaloids, tannins, flavonoids, glycosides, and triterpenoids was identified in the extract. The extract inhibited aldose reductase activity with IC<sub>50</sub> of 92.30 <i>μ</i>gml<sup>-1</sup>. The 30, 100, and 300 mgkg<sup>-1</sup>ABE-treated rats recorded significantly (<i>p</i> < 0.05) reduced cataract scores indicating a delay in cataractogenesis in galactose-induced cataract and in selenite-induced cataractogenesis as well. Markers of lens transparency such as AQP0, alpha-A crystallin, and total lens proteins and lens glutathione levels were significantly (<i>p</i> < 0.05) preserved. In conclusion, this study establishes the anticataract potential of the aqueous stem bark extract of <i>Alstonia boonei</i> in Sprague Dawley rat models.</p>","PeriodicalId":21726,"journal":{"name":"Scientifica","volume":"2023 ","pages":"5524137"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409581/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Aqueous Stem Bark Extract of <i>Alstonia boonei</i> Exhibits Anticataract Activity in Sprague Dawley Rat.\",\"authors\":\"Adwoa Frema Amanfo, Samuel Kyei, Yaw Duah Boakye, Clement Osei Akoto, Justice Kwaku Addo, Kofi Oduro Yeboah, Newman Osafo\",\"doi\":\"10.1155/2023/5524137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Africa, <i>Alstonia boonei</i> is used folklorically for the management of the multitude of conditions including cataract, which accounts for 50% of cases of blindness in the region. The current study set out to probe the traditional use of the aqueous extract of <i>Alstonia boonei</i> stem bark (ABE) as an anticataract remedy using Sprague Dawley rat models. We investigated the probable phytochemical constituents in the extract, <i>in vitro</i> antioxidant potential, and its <i>in vitro</i> aldose reductase inhibition. For the anticataract investigations, diabetic cataract was induced using galactose in 3-week-old Sprague Dawley rats, and age-related cataract was induced by the administration of sodium selenite to 10-day-old rat pups. Cataract scores in both models were determined after treatment with 30, 100, and 300 mgkg<sup>-1</sup> doses of ABE and 10 mlkg<sup>-1</sup> of distilled water. Lens glutathione, total lens protein, soluble lens proteins (alpha-A) crystallin, and aquaporin 0 levels in the enucleated lens homogenates were determined. Changes in lens to body weight were also determined with histopathological analysis done on the lenses in the selenite-induced cataract model. The presence of alkaloids, tannins, flavonoids, glycosides, and triterpenoids was identified in the extract. The extract inhibited aldose reductase activity with IC<sub>50</sub> of 92.30 <i>μ</i>gml<sup>-1</sup>. The 30, 100, and 300 mgkg<sup>-1</sup>ABE-treated rats recorded significantly (<i>p</i> < 0.05) reduced cataract scores indicating a delay in cataractogenesis in galactose-induced cataract and in selenite-induced cataractogenesis as well. Markers of lens transparency such as AQP0, alpha-A crystallin, and total lens proteins and lens glutathione levels were significantly (<i>p</i> < 0.05) preserved. In conclusion, this study establishes the anticataract potential of the aqueous stem bark extract of <i>Alstonia boonei</i> in Sprague Dawley rat models.</p>\",\"PeriodicalId\":21726,\"journal\":{\"name\":\"Scientifica\",\"volume\":\"2023 \",\"pages\":\"5524137\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientifica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5524137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientifica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5524137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
The Aqueous Stem Bark Extract of Alstonia boonei Exhibits Anticataract Activity in Sprague Dawley Rat.
In Africa, Alstonia boonei is used folklorically for the management of the multitude of conditions including cataract, which accounts for 50% of cases of blindness in the region. The current study set out to probe the traditional use of the aqueous extract of Alstonia boonei stem bark (ABE) as an anticataract remedy using Sprague Dawley rat models. We investigated the probable phytochemical constituents in the extract, in vitro antioxidant potential, and its in vitro aldose reductase inhibition. For the anticataract investigations, diabetic cataract was induced using galactose in 3-week-old Sprague Dawley rats, and age-related cataract was induced by the administration of sodium selenite to 10-day-old rat pups. Cataract scores in both models were determined after treatment with 30, 100, and 300 mgkg-1 doses of ABE and 10 mlkg-1 of distilled water. Lens glutathione, total lens protein, soluble lens proteins (alpha-A) crystallin, and aquaporin 0 levels in the enucleated lens homogenates were determined. Changes in lens to body weight were also determined with histopathological analysis done on the lenses in the selenite-induced cataract model. The presence of alkaloids, tannins, flavonoids, glycosides, and triterpenoids was identified in the extract. The extract inhibited aldose reductase activity with IC50 of 92.30 μgml-1. The 30, 100, and 300 mgkg-1ABE-treated rats recorded significantly (p < 0.05) reduced cataract scores indicating a delay in cataractogenesis in galactose-induced cataract and in selenite-induced cataractogenesis as well. Markers of lens transparency such as AQP0, alpha-A crystallin, and total lens proteins and lens glutathione levels were significantly (p < 0.05) preserved. In conclusion, this study establishes the anticataract potential of the aqueous stem bark extract of Alstonia boonei in Sprague Dawley rat models.
期刊介绍:
Scientifica is a peer-reviewed, Open Access journal that publishes research articles, review articles, and clinical studies covering a wide range of subjects in the life sciences, environmental sciences, health sciences, and medicine. The journal is divided into the 65 subject areas.