实验性自身免疫性脑脊髓炎(多发性硬化症小鼠模型)中骨桥蛋白表达及抗vla -4单抗治疗的作用

IF 1.5 4区 医学 Q4 NEUROSCIENCES Folia neuropathologica Pub Date : 2023-01-01 DOI:10.5114/fn.2023.129180
Grażyna Pyka-Fościak, Jan A Litwin, Grzegorz J Lis
{"title":"实验性自身免疫性脑脊髓炎(多发性硬化症小鼠模型)中骨桥蛋白表达及抗vla -4单抗治疗的作用","authors":"Grażyna Pyka-Fościak,&nbsp;Jan A Litwin,&nbsp;Grzegorz J Lis","doi":"10.5114/fn.2023.129180","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Osteopontin (OPN) is involved in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). The aim of this study was to investigate the expression of OPN in spinal cords of mice in the successive phases of EAE, to compare it with the density of inflammatory cells, oligodendrocytes and with the expression of interleukin (IL)-17A and to assess the effect of anti-α4β1 integrin (VLA-4) treatment.</p><p><strong>Material and methods: </strong>Experimental autoimmune encephalomyelitis (EAE) mice were injected with anti-VLA-4 antibodies or, as treatment control, with immunoglobulin G (IgG). Spinal cords were sectioned and immunostained for OPN, CD45 (overall leukocytes), CD3 (T cells), Iba1 (activated macrophages/microglia), IL-17A, and CNP1 (oligodendrocytes). Microscopic images were analysed and the percentage of immunopositive areas encompassing the whole spinal cord cross-sectional area were assessed in images for each antigen.</p><p><strong>Results: </strong>Osteopontin was expressed by inflammatory cells and by a minority of neurons and blood vessels. Most of the studied parameters followed the temporal pattern of clinical scores: increase in the peak phase and decrease in the chronic phase. Only OPN and IL-17A remained at a high level in the chronic phase, while CNP1 expression gradually decreased in the successive phases. Anti-VLA-4 treatment lowered the expression of the studied antigens in the peak and chronic phases with the exception of oligodendrocyte marker CNP1 which in both phases showed an increased expression.</p><p><strong>Conclusions: </strong>Involvement of OPN is particularly significant in advanced EAE. Anti-VLA-4 treatment not only inhibits migration of myelin-reactive T cells, but also downregulates OPN and inhibits loss of oligodendrocytes.</p>","PeriodicalId":12370,"journal":{"name":"Folia neuropathologica","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteopontin expression and the effect of anti-VLA-4 mAb treatment in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.\",\"authors\":\"Grażyna Pyka-Fościak,&nbsp;Jan A Litwin,&nbsp;Grzegorz J Lis\",\"doi\":\"10.5114/fn.2023.129180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Osteopontin (OPN) is involved in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). The aim of this study was to investigate the expression of OPN in spinal cords of mice in the successive phases of EAE, to compare it with the density of inflammatory cells, oligodendrocytes and with the expression of interleukin (IL)-17A and to assess the effect of anti-α4β1 integrin (VLA-4) treatment.</p><p><strong>Material and methods: </strong>Experimental autoimmune encephalomyelitis (EAE) mice were injected with anti-VLA-4 antibodies or, as treatment control, with immunoglobulin G (IgG). Spinal cords were sectioned and immunostained for OPN, CD45 (overall leukocytes), CD3 (T cells), Iba1 (activated macrophages/microglia), IL-17A, and CNP1 (oligodendrocytes). Microscopic images were analysed and the percentage of immunopositive areas encompassing the whole spinal cord cross-sectional area were assessed in images for each antigen.</p><p><strong>Results: </strong>Osteopontin was expressed by inflammatory cells and by a minority of neurons and blood vessels. Most of the studied parameters followed the temporal pattern of clinical scores: increase in the peak phase and decrease in the chronic phase. Only OPN and IL-17A remained at a high level in the chronic phase, while CNP1 expression gradually decreased in the successive phases. Anti-VLA-4 treatment lowered the expression of the studied antigens in the peak and chronic phases with the exception of oligodendrocyte marker CNP1 which in both phases showed an increased expression.</p><p><strong>Conclusions: </strong>Involvement of OPN is particularly significant in advanced EAE. Anti-VLA-4 treatment not only inhibits migration of myelin-reactive T cells, but also downregulates OPN and inhibits loss of oligodendrocytes.</p>\",\"PeriodicalId\":12370,\"journal\":{\"name\":\"Folia neuropathologica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia neuropathologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5114/fn.2023.129180\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/fn.2023.129180","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

骨桥蛋白(OPN)参与多发性硬化症及其动物模型实验性自身免疫性脑脊髓炎(EAE)的发病机制。本研究旨在观察EAE各阶段小鼠脊髓中OPN的表达,比较其与炎症细胞、少突胶质细胞密度及白细胞介素(IL)-17A的表达,并评价抗α4β1整合素(vla4)治疗的效果。材料和方法:给实验性自身免疫性脑脊髓炎(EAE)小鼠注射抗vla4抗体或免疫球蛋白G (IgG)作为治疗对照。脊髓切片并进行OPN、CD45(总白细胞)、CD3 (T细胞)、Iba1(活化的巨噬细胞/小胶质细胞)、IL-17A和CNP1(少突胶质细胞)免疫染色。对显微镜图像进行分析,并评估每种抗原在图像中覆盖整个脊髓横截面积的免疫阳性区域的百分比。结果:骨桥蛋白在炎性细胞、少数神经元和血管中表达。研究参数大多符合临床评分的时间模式:高峰期升高,慢性期降低。只有OPN和IL-17A在慢性期保持高水平,而CNP1的表达在连续期逐渐下降。除少突胶质细胞标志物CNP1外,抗vla4处理降低了所研究抗原在高峰期和慢性期的表达。结论:OPN的累及在晚期EAE中尤为重要。抗vla4处理不仅抑制髓磷脂反应性T细胞的迁移,而且下调OPN,抑制少突胶质细胞的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Osteopontin expression and the effect of anti-VLA-4 mAb treatment in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.

Introduction: Osteopontin (OPN) is involved in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). The aim of this study was to investigate the expression of OPN in spinal cords of mice in the successive phases of EAE, to compare it with the density of inflammatory cells, oligodendrocytes and with the expression of interleukin (IL)-17A and to assess the effect of anti-α4β1 integrin (VLA-4) treatment.

Material and methods: Experimental autoimmune encephalomyelitis (EAE) mice were injected with anti-VLA-4 antibodies or, as treatment control, with immunoglobulin G (IgG). Spinal cords were sectioned and immunostained for OPN, CD45 (overall leukocytes), CD3 (T cells), Iba1 (activated macrophages/microglia), IL-17A, and CNP1 (oligodendrocytes). Microscopic images were analysed and the percentage of immunopositive areas encompassing the whole spinal cord cross-sectional area were assessed in images for each antigen.

Results: Osteopontin was expressed by inflammatory cells and by a minority of neurons and blood vessels. Most of the studied parameters followed the temporal pattern of clinical scores: increase in the peak phase and decrease in the chronic phase. Only OPN and IL-17A remained at a high level in the chronic phase, while CNP1 expression gradually decreased in the successive phases. Anti-VLA-4 treatment lowered the expression of the studied antigens in the peak and chronic phases with the exception of oligodendrocyte marker CNP1 which in both phases showed an increased expression.

Conclusions: Involvement of OPN is particularly significant in advanced EAE. Anti-VLA-4 treatment not only inhibits migration of myelin-reactive T cells, but also downregulates OPN and inhibits loss of oligodendrocytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia neuropathologica
Folia neuropathologica 医学-病理学
CiteScore
2.50
自引率
5.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: Folia Neuropathologica is an official journal of the Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. The journal publishes original articles and reviews that deal with all aspects of clinical and experimental neuropathology and related fields of neuroscience research. The scope of journal includes surgical and experimental pathomorphology, ultrastructure, immunohistochemistry, biochemistry and molecular biology of the nervous tissue. Papers on surgical neuropathology and neuroimaging are also welcome. The reports in other fields relevant to the understanding of human neuropathology might be considered.
期刊最新文献
Triptolide promotes nerve repair after cerebral ischemia reperfusion injury by regulating the NogoA/NgR/ROCK pathway. The early predictive value of maternal serum PAPP-A concentration at 11-14 weeks of pregnancy for preeclampsia. Long non-coding RNA LBX2-AS1 activates IL4R to promote glioblastoma metastasis and angiogenesis by binding to the transcription factor NFKB1. Mild malformation of cortical development with oligodendroglial hyperplasia in frontal lobe epilepsy (MOGHE): a report of the first case in Bulgaria. Neuropathological findings in essential tremor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1