Hyeonha Jang, Uttam Ojha, Ji-Hak Jeong, Keun-Gyu Park, Shin Yup Lee, You Mie Lee
{"title":"肉豆蔻素通过PI3K/Akt/mTOR通路调节巨噬细胞极化和功能,抑制肿瘤生长","authors":"Hyeonha Jang, Uttam Ojha, Ji-Hak Jeong, Keun-Gyu Park, Shin Yup Lee, You Mie Lee","doi":"10.1007/s12272-023-01454-1","DOIUrl":null,"url":null,"abstract":"<div><p>Macrophages within the tumor microenvironment (TME), referred to as tumor-associated macrophages (TAMs), are involved in various aspects of tumor progression including initiation, angiogenesis, metastasis, immunosuppression, and resistance to therapy. Myriocin, a natural compound isolated from <i>Mycelia sterilia</i>, is an immunosuppressant that inhibits tumor growth and angiogenesis. However, the mechanisms underlying the effects of myriocin on TAMs and TAM-mediated tumor growth have not yet been elucidated. In this study, we determined the effects of myriocin on TAMs and the underlying mechanism in vitro and in vivo. Myriocin significantly suppressed monocyte–macrophage differentiation and M2 polarization of macrophages but not M1 polarization. In addition, myriocin inhibited the expression of anti-inflammatory cytokines and secretion of proangiogenic factors, such as vascular endothelial growth factor, in M2 macrophages as well as M2-induced endothelial cell permeability. Myriocin also inhibited the PI3K/Akt/mTOR signaling pathway in M2 macrophages. Myriocin reduced the population of M2-like TAMs within the tumor tissue of a mouse allograft tumor model but not that of M1-like TAMs. Moreover, combined treatment with myriocin and cisplatin synergistically suppressed tumor growth and enhanced survival rate in mice by reducing the population of M2-like TAMs. Overall, these results suggest that myriocin inhibits tumor growth by remodeling the TME through suppression of differentiation and polarization of M2-like TAMs via the PI3K/Akt/mTOR signaling pathway.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 7","pages":"629 - 645"},"PeriodicalIF":6.9000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01454-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Myriocin suppresses tumor growth by modulating macrophage polarization and function through the PI3K/Akt/mTOR pathway\",\"authors\":\"Hyeonha Jang, Uttam Ojha, Ji-Hak Jeong, Keun-Gyu Park, Shin Yup Lee, You Mie Lee\",\"doi\":\"10.1007/s12272-023-01454-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Macrophages within the tumor microenvironment (TME), referred to as tumor-associated macrophages (TAMs), are involved in various aspects of tumor progression including initiation, angiogenesis, metastasis, immunosuppression, and resistance to therapy. Myriocin, a natural compound isolated from <i>Mycelia sterilia</i>, is an immunosuppressant that inhibits tumor growth and angiogenesis. However, the mechanisms underlying the effects of myriocin on TAMs and TAM-mediated tumor growth have not yet been elucidated. In this study, we determined the effects of myriocin on TAMs and the underlying mechanism in vitro and in vivo. Myriocin significantly suppressed monocyte–macrophage differentiation and M2 polarization of macrophages but not M1 polarization. In addition, myriocin inhibited the expression of anti-inflammatory cytokines and secretion of proangiogenic factors, such as vascular endothelial growth factor, in M2 macrophages as well as M2-induced endothelial cell permeability. Myriocin also inhibited the PI3K/Akt/mTOR signaling pathway in M2 macrophages. Myriocin reduced the population of M2-like TAMs within the tumor tissue of a mouse allograft tumor model but not that of M1-like TAMs. Moreover, combined treatment with myriocin and cisplatin synergistically suppressed tumor growth and enhanced survival rate in mice by reducing the population of M2-like TAMs. Overall, these results suggest that myriocin inhibits tumor growth by remodeling the TME through suppression of differentiation and polarization of M2-like TAMs via the PI3K/Akt/mTOR signaling pathway.</p></div>\",\"PeriodicalId\":8287,\"journal\":{\"name\":\"Archives of Pharmacal Research\",\"volume\":\"46 7\",\"pages\":\"629 - 645\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12272-023-01454-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Pharmacal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12272-023-01454-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-023-01454-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Myriocin suppresses tumor growth by modulating macrophage polarization and function through the PI3K/Akt/mTOR pathway
Macrophages within the tumor microenvironment (TME), referred to as tumor-associated macrophages (TAMs), are involved in various aspects of tumor progression including initiation, angiogenesis, metastasis, immunosuppression, and resistance to therapy. Myriocin, a natural compound isolated from Mycelia sterilia, is an immunosuppressant that inhibits tumor growth and angiogenesis. However, the mechanisms underlying the effects of myriocin on TAMs and TAM-mediated tumor growth have not yet been elucidated. In this study, we determined the effects of myriocin on TAMs and the underlying mechanism in vitro and in vivo. Myriocin significantly suppressed monocyte–macrophage differentiation and M2 polarization of macrophages but not M1 polarization. In addition, myriocin inhibited the expression of anti-inflammatory cytokines and secretion of proangiogenic factors, such as vascular endothelial growth factor, in M2 macrophages as well as M2-induced endothelial cell permeability. Myriocin also inhibited the PI3K/Akt/mTOR signaling pathway in M2 macrophages. Myriocin reduced the population of M2-like TAMs within the tumor tissue of a mouse allograft tumor model but not that of M1-like TAMs. Moreover, combined treatment with myriocin and cisplatin synergistically suppressed tumor growth and enhanced survival rate in mice by reducing the population of M2-like TAMs. Overall, these results suggest that myriocin inhibits tumor growth by remodeling the TME through suppression of differentiation and polarization of M2-like TAMs via the PI3K/Akt/mTOR signaling pathway.
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.