{"title":"磷石膏的环境行为与实验室规模实验的应用。","authors":"Maria Pliaka, Georgios Gaidajis","doi":"10.1080/10934529.2023.2208994","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphogypsum (PG) is a reject of the phosphoric acid production process in phosphate fertilizer industries. The process results in the production of relatively large quantities of PG that it might cause serious environmental and human health concerns. The data of a laboratory investigation of PG are presented here. Lab-scale experiments with lysimeters were conducted in order to simulate and examine the environmental characteristics and the temporal behavior of PG leachates in terms of physicochemical characteristics and chemical composition. Based on the results, leachates from already deposited for many years PG or its mixture with marble powder, seemed to have better pH and conductivity values and lower elemental concentrations compared to leachates from freshly disposed PG. However, the leachates characteristics improve and stabilize in both cases after four days of irrigation or of 1080-1240 mm of rain. Most major elements were found to have minimal leachability, and the material satisfied the environmental limits for its disposal at landfills for inert and non-hazardous wastes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examination of the environmental behavior of phosphogypsum with the application of lab-scale experiment.\",\"authors\":\"Maria Pliaka, Georgios Gaidajis\",\"doi\":\"10.1080/10934529.2023.2208994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphogypsum (PG) is a reject of the phosphoric acid production process in phosphate fertilizer industries. The process results in the production of relatively large quantities of PG that it might cause serious environmental and human health concerns. The data of a laboratory investigation of PG are presented here. Lab-scale experiments with lysimeters were conducted in order to simulate and examine the environmental characteristics and the temporal behavior of PG leachates in terms of physicochemical characteristics and chemical composition. Based on the results, leachates from already deposited for many years PG or its mixture with marble powder, seemed to have better pH and conductivity values and lower elemental concentrations compared to leachates from freshly disposed PG. However, the leachates characteristics improve and stabilize in both cases after four days of irrigation or of 1080-1240 mm of rain. Most major elements were found to have minimal leachability, and the material satisfied the environmental limits for its disposal at landfills for inert and non-hazardous wastes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2208994\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2208994","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Examination of the environmental behavior of phosphogypsum with the application of lab-scale experiment.
Phosphogypsum (PG) is a reject of the phosphoric acid production process in phosphate fertilizer industries. The process results in the production of relatively large quantities of PG that it might cause serious environmental and human health concerns. The data of a laboratory investigation of PG are presented here. Lab-scale experiments with lysimeters were conducted in order to simulate and examine the environmental characteristics and the temporal behavior of PG leachates in terms of physicochemical characteristics and chemical composition. Based on the results, leachates from already deposited for many years PG or its mixture with marble powder, seemed to have better pH and conductivity values and lower elemental concentrations compared to leachates from freshly disposed PG. However, the leachates characteristics improve and stabilize in both cases after four days of irrigation or of 1080-1240 mm of rain. Most major elements were found to have minimal leachability, and the material satisfied the environmental limits for its disposal at landfills for inert and non-hazardous wastes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.