含有kindlin 1敲低的FERM结构域通过NLR家族pyrin结构域3/核因子κ B途径减轻大鼠脑出血引起的炎症。

IF 2.2 4区 农林科学 Q1 VETERINARY SCIENCES Experimental Animals Pub Date : 2023-08-07 DOI:10.1538/expanim.22-0145
Jianqiang Wei, Jing Yin, Ying Cui, Kaijie Wang, Mingyan Hong, Jianzhong Cui
{"title":"含有kindlin 1敲低的FERM结构域通过NLR家族pyrin结构域3/核因子κ B途径减轻大鼠脑出血引起的炎症。","authors":"Jianqiang Wei,&nbsp;Jing Yin,&nbsp;Ying Cui,&nbsp;Kaijie Wang,&nbsp;Mingyan Hong,&nbsp;Jianzhong Cui","doi":"10.1538/expanim.22-0145","DOIUrl":null,"url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is an incurable neurological disease. Microglia activation and its related inflammation contribute to ICH-associated brain damage. FERM domain containing kindlin 1 (FERMT1) is an integrin-binding protein that participates in microglia-associated inflammation, but its role in ICH is unclear. An ICH model was constructed by injecting 50 µl of autologous blood into the bregma of rats. FERMT1 siRNA was injected into the right ventricle of the rat for knockdown of FERMT1. A significant striatal hematoma was observed in ICH rats. FERMT1 knockdown reduced the water content of brain tissue, alleviated brain hematoma and improved behavioral function in ICH rats. FERMT1 knockdown reduced microglia activity, inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activity and decreased the expression of inflammatory factors including IL-1β and IL-18 in the peri-hematoma tissues. BV2 microglial cells were transfected with FERMT1 siRNA and incubated with 60 µM Hemin for 24 h. Activation of NLRP3 inflammasome induced by hemin were reduced in microglia when FERMT1 was knocked down, leading to decreased production of inflammatory factors IL-1β and IL-18. In addition, knockdown of FERMT1 prevented the activation of nuclear factor kappa B (NF-κB) signaling pathway in vivo and in vitro. Our findings suggested that down-regulation of FERMT1 attenuated microglial inflammation and brain damage induced by ICH via NLRP3/NF-κB pathway. FERMT1 is a key regulator of inflammatory damage in rats after ICH.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":"72 3","pages":"324-335"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/5c/expanim-72-324.PMC10435358.pdf","citationCount":"0","resultStr":"{\"title\":\"FERM domain containing kindlin 1 knockdown attenuates inflammation induced by intracerebral hemorrhage in rats via NLR family pyrin domain containing 3/nuclear factor kappa B pathway.\",\"authors\":\"Jianqiang Wei,&nbsp;Jing Yin,&nbsp;Ying Cui,&nbsp;Kaijie Wang,&nbsp;Mingyan Hong,&nbsp;Jianzhong Cui\",\"doi\":\"10.1538/expanim.22-0145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intracerebral hemorrhage (ICH) is an incurable neurological disease. Microglia activation and its related inflammation contribute to ICH-associated brain damage. FERM domain containing kindlin 1 (FERMT1) is an integrin-binding protein that participates in microglia-associated inflammation, but its role in ICH is unclear. An ICH model was constructed by injecting 50 µl of autologous blood into the bregma of rats. FERMT1 siRNA was injected into the right ventricle of the rat for knockdown of FERMT1. A significant striatal hematoma was observed in ICH rats. FERMT1 knockdown reduced the water content of brain tissue, alleviated brain hematoma and improved behavioral function in ICH rats. FERMT1 knockdown reduced microglia activity, inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activity and decreased the expression of inflammatory factors including IL-1β and IL-18 in the peri-hematoma tissues. BV2 microglial cells were transfected with FERMT1 siRNA and incubated with 60 µM Hemin for 24 h. Activation of NLRP3 inflammasome induced by hemin were reduced in microglia when FERMT1 was knocked down, leading to decreased production of inflammatory factors IL-1β and IL-18. In addition, knockdown of FERMT1 prevented the activation of nuclear factor kappa B (NF-κB) signaling pathway in vivo and in vitro. Our findings suggested that down-regulation of FERMT1 attenuated microglial inflammation and brain damage induced by ICH via NLRP3/NF-κB pathway. FERMT1 is a key regulator of inflammatory damage in rats after ICH.</p>\",\"PeriodicalId\":12102,\"journal\":{\"name\":\"Experimental Animals\",\"volume\":\"72 3\",\"pages\":\"324-335\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/5c/expanim-72-324.PMC10435358.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Animals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1538/expanim.22-0145\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.22-0145","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑出血是一种无法治愈的神经系统疾病。小胶质细胞激活及其相关炎症有助于ich相关的脑损伤。FERM结构域含有kindlin 1 (FERMT1)是一种整合素结合蛋白,参与小胶质细胞相关炎症,但其在脑出血中的作用尚不清楚。将50µl的自体血液注入大鼠脑膜,建立脑出血模型。将FERMT1 siRNA注入大鼠右心室,敲低FERMT1。脑出血大鼠纹状体血肿明显。敲低FERMT1可降低脑出血大鼠脑组织含水量,减轻脑血肿,改善行为功能。FERMT1敲低可降低小胶质细胞活性,抑制NLR家族pyrin domain containing 3 (NLRP3)炎性小体活性,降低血肿周围组织炎症因子IL-1β和IL-18的表达。用FERMT1 siRNA转染BV2小胶质细胞,并用60µM Hemin孵卵24 h。当FERMT1被敲低时,Hemin诱导的NLRP3炎症小体的激活减少,导致炎症因子IL-1β和IL-18的产生减少。此外,FERMT1的下调在体内和体外均可阻止核因子κB (NF-κB)信号通路的激活。我们的研究结果表明,下调FERMT1可通过NLRP3/NF-κB途径减轻ICH引起的小胶质细胞炎症和脑损伤。FERMT1是大鼠脑出血后炎症损伤的关键调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FERM domain containing kindlin 1 knockdown attenuates inflammation induced by intracerebral hemorrhage in rats via NLR family pyrin domain containing 3/nuclear factor kappa B pathway.

Intracerebral hemorrhage (ICH) is an incurable neurological disease. Microglia activation and its related inflammation contribute to ICH-associated brain damage. FERM domain containing kindlin 1 (FERMT1) is an integrin-binding protein that participates in microglia-associated inflammation, but its role in ICH is unclear. An ICH model was constructed by injecting 50 µl of autologous blood into the bregma of rats. FERMT1 siRNA was injected into the right ventricle of the rat for knockdown of FERMT1. A significant striatal hematoma was observed in ICH rats. FERMT1 knockdown reduced the water content of brain tissue, alleviated brain hematoma and improved behavioral function in ICH rats. FERMT1 knockdown reduced microglia activity, inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activity and decreased the expression of inflammatory factors including IL-1β and IL-18 in the peri-hematoma tissues. BV2 microglial cells were transfected with FERMT1 siRNA and incubated with 60 µM Hemin for 24 h. Activation of NLRP3 inflammasome induced by hemin were reduced in microglia when FERMT1 was knocked down, leading to decreased production of inflammatory factors IL-1β and IL-18. In addition, knockdown of FERMT1 prevented the activation of nuclear factor kappa B (NF-κB) signaling pathway in vivo and in vitro. Our findings suggested that down-regulation of FERMT1 attenuated microglial inflammation and brain damage induced by ICH via NLRP3/NF-κB pathway. FERMT1 is a key regulator of inflammatory damage in rats after ICH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Animals
Experimental Animals 生物-动物学
CiteScore
2.80
自引率
4.20%
发文量
2
审稿时长
3 months
期刊介绍: The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.
期刊最新文献
Adriamycin-induced nephropathy models: elucidating CKD pathophysiology and advancing therapeutic strategies. Dual-route administration of balanced anesthesia using medetomidine, midazolam, and butorphanol provides both suitable anesthetic depth and reduced tissue injury in rabbits. Morphological analysis of autophagy in axonal degeneration in gracile axonal dystrophy mice. Transcriptomics and metabolomics analysis of the pathogenesis of a novel hyperlipidemia-susceptible rat strain. High-frequency ultrasound for assessing the renal characteristics of spontaneous type 2 diabetes mellitus db/db mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1