Jinli Wang, Xinzhan Zhang, Yisha Gao, Lili Zhou, Daquan Sun
{"title":"[人shisa样蛋白1(SHISAL1)小鼠多克隆抗体的制备及表位区预测]。","authors":"Jinli Wang, Xinzhan Zhang, Yisha Gao, Lili Zhou, Daquan Sun","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Objective To investigate antigen optimization of Shisa like protein 1 (SHISAL1) for preparing mouse anti-human SHISAL1 polyclonal antibody and to identify the specificity of the prepared antibody. Methods Bioinformatics was employed to predict the antigenic epitope region of SHISAL1 protein, and then a polypeptide composed of amino acid residues from the site of 28 to 97 of SHISAL1, termed SHISAL1-N, was selected as the antigen. The coding region of SHISAL1-N was cloned by molecular cloning technique, and then it was inserted into pET-28a to generate pET28a-SHISAL1-N recombinant plasmid. The two recombinant plasmids pET28a-SHISAL1-N and pET28a-SHISAL1 were transformed into BL21 (DE3) bacteria and induced to express by IPTG. The two proteins were purified and immunized to female Kunming mice, respectively. The specificities and sensitivities of the acquired antibodies were detected by Western blot analysis, immunoprecipitation and immunofluorescent cytochemical staining. Results pET28a-SHISAL1-N recombinant plasmid was successfully constructed, and the two fused proteins, SHISAL1 and SHISAL1-N, were induced to express. Moreover, two types of SHISAL1 mouse polyclonal antibodies, derived from SHISAL1-N and SHISAL1 antigens, were obtained. Western blot results showed that the antibody prepared from SHISAL1 antigen was less specific and sensitive compared with the antibody prepared from SHISAL1-N antigen which could specifically identify different endogenous SHISAL1 protein. Immunoprecipitation results showed that SHISAL1-N antibody could specifically pull down SHIISAL1 protein in hepatocellular carcinoma cells and immunofluorescence results demonstrated that SHISAL1-N antibody could specifically bind to SHISAL1 protein in the cytoplasm. Conclusion We have optimized the SHISAL1 antigen and prepared the mouse anti-human SHISAL1 polyclonal antibodies successfully, which can be used for Western blot analysis, immunoprecipitation and immunofluorescence cytochemical staining.</p>","PeriodicalId":23737,"journal":{"name":"Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology","volume":"39 4","pages":"363-370"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Prediction of epitope region and preparation of mouse polyclonal antibody of human Shisa-like protein 1(SHISAL1)].\",\"authors\":\"Jinli Wang, Xinzhan Zhang, Yisha Gao, Lili Zhou, Daquan Sun\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Objective To investigate antigen optimization of Shisa like protein 1 (SHISAL1) for preparing mouse anti-human SHISAL1 polyclonal antibody and to identify the specificity of the prepared antibody. Methods Bioinformatics was employed to predict the antigenic epitope region of SHISAL1 protein, and then a polypeptide composed of amino acid residues from the site of 28 to 97 of SHISAL1, termed SHISAL1-N, was selected as the antigen. The coding region of SHISAL1-N was cloned by molecular cloning technique, and then it was inserted into pET-28a to generate pET28a-SHISAL1-N recombinant plasmid. The two recombinant plasmids pET28a-SHISAL1-N and pET28a-SHISAL1 were transformed into BL21 (DE3) bacteria and induced to express by IPTG. The two proteins were purified and immunized to female Kunming mice, respectively. The specificities and sensitivities of the acquired antibodies were detected by Western blot analysis, immunoprecipitation and immunofluorescent cytochemical staining. Results pET28a-SHISAL1-N recombinant plasmid was successfully constructed, and the two fused proteins, SHISAL1 and SHISAL1-N, were induced to express. Moreover, two types of SHISAL1 mouse polyclonal antibodies, derived from SHISAL1-N and SHISAL1 antigens, were obtained. Western blot results showed that the antibody prepared from SHISAL1 antigen was less specific and sensitive compared with the antibody prepared from SHISAL1-N antigen which could specifically identify different endogenous SHISAL1 protein. Immunoprecipitation results showed that SHISAL1-N antibody could specifically pull down SHIISAL1 protein in hepatocellular carcinoma cells and immunofluorescence results demonstrated that SHISAL1-N antibody could specifically bind to SHISAL1 protein in the cytoplasm. Conclusion We have optimized the SHISAL1 antigen and prepared the mouse anti-human SHISAL1 polyclonal antibodies successfully, which can be used for Western blot analysis, immunoprecipitation and immunofluorescence cytochemical staining.</p>\",\"PeriodicalId\":23737,\"journal\":{\"name\":\"Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology\",\"volume\":\"39 4\",\"pages\":\"363-370\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Prediction of epitope region and preparation of mouse polyclonal antibody of human Shisa-like protein 1(SHISAL1)].
Objective To investigate antigen optimization of Shisa like protein 1 (SHISAL1) for preparing mouse anti-human SHISAL1 polyclonal antibody and to identify the specificity of the prepared antibody. Methods Bioinformatics was employed to predict the antigenic epitope region of SHISAL1 protein, and then a polypeptide composed of amino acid residues from the site of 28 to 97 of SHISAL1, termed SHISAL1-N, was selected as the antigen. The coding region of SHISAL1-N was cloned by molecular cloning technique, and then it was inserted into pET-28a to generate pET28a-SHISAL1-N recombinant plasmid. The two recombinant plasmids pET28a-SHISAL1-N and pET28a-SHISAL1 were transformed into BL21 (DE3) bacteria and induced to express by IPTG. The two proteins were purified and immunized to female Kunming mice, respectively. The specificities and sensitivities of the acquired antibodies were detected by Western blot analysis, immunoprecipitation and immunofluorescent cytochemical staining. Results pET28a-SHISAL1-N recombinant plasmid was successfully constructed, and the two fused proteins, SHISAL1 and SHISAL1-N, were induced to express. Moreover, two types of SHISAL1 mouse polyclonal antibodies, derived from SHISAL1-N and SHISAL1 antigens, were obtained. Western blot results showed that the antibody prepared from SHISAL1 antigen was less specific and sensitive compared with the antibody prepared from SHISAL1-N antigen which could specifically identify different endogenous SHISAL1 protein. Immunoprecipitation results showed that SHISAL1-N antibody could specifically pull down SHIISAL1 protein in hepatocellular carcinoma cells and immunofluorescence results demonstrated that SHISAL1-N antibody could specifically bind to SHISAL1 protein in the cytoplasm. Conclusion We have optimized the SHISAL1 antigen and prepared the mouse anti-human SHISAL1 polyclonal antibodies successfully, which can be used for Western blot analysis, immunoprecipitation and immunofluorescence cytochemical staining.