鸽子学习和组织会话内序列(Columba livia)

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-06-19 DOI:10.1007/s10071-023-01801-1
Muhammad A. J. Qadri, Robert G. Cook
{"title":"鸽子学习和组织会话内序列(Columba livia)","authors":"Muhammad A. J. Qadri,&nbsp;Robert G. Cook","doi":"10.1007/s10071-023-01801-1","DOIUrl":null,"url":null,"abstract":"<div><p>Most animals engage in complex activities that are the combination of simpler actions expressed over a period of time. The mechanisms organizing such sequential behavior have been of long-standing biological and psychological interest. Previously, we observed pigeons’ anticipatory behavior with a within-session sequence involving four choice alternatives suggestive of a potential understanding of the overall order and sequence of the items within a session. In that task, each colored alternative was correct for 24 consecutive trials as presented in a predictable sequence (i.e., A first, then B, then C, then D). To test whether these four already-trained pigeons possessed a sequential and linked representation of the ABCD items, we added a second four-item sequence involving new and distinct colored choice alternatives (i.e., E first for 24 trials, then F, then G, then H) and then alternated these ABCD and EFGH sequences over successive sessions. Over three manipulations, we tested and trained trials composed of combinations of elements from both sequences. We determined that pigeons did not learn any within-sequence associations among the elements. Despite the availability and explicit utility of such sequence cues, the data suggest instead that pigeons learned the discrimination tasks as a series of temporal associations among independent elements. This absence of any sequential linkage is consistent with the hypothesis that such representations are difficult to form in pigeons. This pattern of data suggests that for repeated sequential activities in birds, and potentially other animals including humans, there are highly effective, but underappreciated, clock-like mechanisms that control the ordering of behaviors.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10071-023-01801-1.pdf","citationCount":"1","resultStr":"{\"title\":\"Learning and organization of within-session sequences by pigeons (Columba livia)\",\"authors\":\"Muhammad A. J. Qadri,&nbsp;Robert G. Cook\",\"doi\":\"10.1007/s10071-023-01801-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most animals engage in complex activities that are the combination of simpler actions expressed over a period of time. The mechanisms organizing such sequential behavior have been of long-standing biological and psychological interest. Previously, we observed pigeons’ anticipatory behavior with a within-session sequence involving four choice alternatives suggestive of a potential understanding of the overall order and sequence of the items within a session. In that task, each colored alternative was correct for 24 consecutive trials as presented in a predictable sequence (i.e., A first, then B, then C, then D). To test whether these four already-trained pigeons possessed a sequential and linked representation of the ABCD items, we added a second four-item sequence involving new and distinct colored choice alternatives (i.e., E first for 24 trials, then F, then G, then H) and then alternated these ABCD and EFGH sequences over successive sessions. Over three manipulations, we tested and trained trials composed of combinations of elements from both sequences. We determined that pigeons did not learn any within-sequence associations among the elements. Despite the availability and explicit utility of such sequence cues, the data suggest instead that pigeons learned the discrimination tasks as a series of temporal associations among independent elements. This absence of any sequential linkage is consistent with the hypothesis that such representations are difficult to form in pigeons. This pattern of data suggests that for repeated sequential activities in birds, and potentially other animals including humans, there are highly effective, but underappreciated, clock-like mechanisms that control the ordering of behaviors.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10071-023-01801-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10071-023-01801-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10071-023-01801-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

大多数动物从事复杂的活动,这些活动是在一段时间内表达的简单动作的组合。组织这种连续行为的机制一直受到生物学和心理学的关注。此前,我们观察到鸽子的预期行为,会话内序列包括四个选择选项,这暗示了对会话内项目的整体顺序和序列的潜在理解。在该任务中,按照可预测的顺序(即,首先是a,然后是B,然后是C,然后是D),每个彩色替代品在24个连续试验中都是正确的。为了测试这四只已经训练过的鸽子是否拥有ABCD项目的顺序和链接表示,我们添加了第二个四项目序列,涉及新的和不同颜色的选择选项(即,24次试验中首先是e,然后是F,然后是G,然后是H),然后在连续的试验中交替使用ABCD和EFGH序列。在三次操作中,我们测试并训练了由两个序列的元素组合组成的试验。我们确定鸽子没有学习到任何元素之间的序列内关联。尽管这种序列线索的可用性和明确的实用性,但数据表明,鸽子学习辨别任务是作为独立元素之间的一系列时间关联。这种没有任何顺序联系的情况与鸽子很难形成这种表征的假设是一致的。这种数据模式表明,对于鸟类以及可能包括人类在内的其他动物的重复顺序活动,有非常有效但未被充分重视的类似时钟的机制来控制行为的顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning and organization of within-session sequences by pigeons (Columba livia)

Most animals engage in complex activities that are the combination of simpler actions expressed over a period of time. The mechanisms organizing such sequential behavior have been of long-standing biological and psychological interest. Previously, we observed pigeons’ anticipatory behavior with a within-session sequence involving four choice alternatives suggestive of a potential understanding of the overall order and sequence of the items within a session. In that task, each colored alternative was correct for 24 consecutive trials as presented in a predictable sequence (i.e., A first, then B, then C, then D). To test whether these four already-trained pigeons possessed a sequential and linked representation of the ABCD items, we added a second four-item sequence involving new and distinct colored choice alternatives (i.e., E first for 24 trials, then F, then G, then H) and then alternated these ABCD and EFGH sequences over successive sessions. Over three manipulations, we tested and trained trials composed of combinations of elements from both sequences. We determined that pigeons did not learn any within-sequence associations among the elements. Despite the availability and explicit utility of such sequence cues, the data suggest instead that pigeons learned the discrimination tasks as a series of temporal associations among independent elements. This absence of any sequential linkage is consistent with the hypothesis that such representations are difficult to form in pigeons. This pattern of data suggests that for repeated sequential activities in birds, and potentially other animals including humans, there are highly effective, but underappreciated, clock-like mechanisms that control the ordering of behaviors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1