Siddharth Nath, Ehsan Rahimy, Ashley Kras, Edward Korot
{"title":"通过对真实世界数据的分布式验证,实现更安全的眼科人工智能。","authors":"Siddharth Nath, Ehsan Rahimy, Ashley Kras, Edward Korot","doi":"10.1097/ICU.0000000000000986","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The current article provides an overview of the present approaches to algorithm validation, which are variable and largely self-determined, as well as solutions to address inadequacies.</p><p><strong>Recent findings: </strong>In the last decade alone, numerous machine learning applications have been proposed for ophthalmic diagnosis or disease monitoring. Remarkably, of these, less than 15 have received regulatory approval for implementation into clinical practice. Although there exists a vast pool of structured and relatively clean datasets from which to develop and test algorithms in the computational 'laboratory', real-world validation remains key to allow for safe, equitable, and clinically reliable implementation. Bottlenecks in the validation process stem from a striking paucity of regulatory guidance surrounding safety and performance thresholds, lack of oversight on critical postdeployment monitoring and context-specific recalibration, and inherent complexities of heterogeneous disease states and clinical environments. Implementation of secure, third-party, unbiased, pre and postdeployment validation offers the potential to address existing shortfalls in the validation process.</p><p><strong>Summary: </strong>Given the criticality of validation to the algorithm pipeline, there is an urgent need for developers, machine learning researchers, and end-user clinicians to devise a consensus approach, allowing for the rapid introduction of safe, equitable, and clinically valid machine learning implementations.</p>","PeriodicalId":50604,"journal":{"name":"Current Opinion in Ophthalmology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward safer ophthalmic artificial intelligence via distributed validation on real-world data.\",\"authors\":\"Siddharth Nath, Ehsan Rahimy, Ashley Kras, Edward Korot\",\"doi\":\"10.1097/ICU.0000000000000986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The current article provides an overview of the present approaches to algorithm validation, which are variable and largely self-determined, as well as solutions to address inadequacies.</p><p><strong>Recent findings: </strong>In the last decade alone, numerous machine learning applications have been proposed for ophthalmic diagnosis or disease monitoring. Remarkably, of these, less than 15 have received regulatory approval for implementation into clinical practice. Although there exists a vast pool of structured and relatively clean datasets from which to develop and test algorithms in the computational 'laboratory', real-world validation remains key to allow for safe, equitable, and clinically reliable implementation. Bottlenecks in the validation process stem from a striking paucity of regulatory guidance surrounding safety and performance thresholds, lack of oversight on critical postdeployment monitoring and context-specific recalibration, and inherent complexities of heterogeneous disease states and clinical environments. Implementation of secure, third-party, unbiased, pre and postdeployment validation offers the potential to address existing shortfalls in the validation process.</p><p><strong>Summary: </strong>Given the criticality of validation to the algorithm pipeline, there is an urgent need for developers, machine learning researchers, and end-user clinicians to devise a consensus approach, allowing for the rapid introduction of safe, equitable, and clinically valid machine learning implementations.</p>\",\"PeriodicalId\":50604,\"journal\":{\"name\":\"Current Opinion in Ophthalmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/ICU.0000000000000986\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ICU.0000000000000986","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Toward safer ophthalmic artificial intelligence via distributed validation on real-world data.
Purpose of review: The current article provides an overview of the present approaches to algorithm validation, which are variable and largely self-determined, as well as solutions to address inadequacies.
Recent findings: In the last decade alone, numerous machine learning applications have been proposed for ophthalmic diagnosis or disease monitoring. Remarkably, of these, less than 15 have received regulatory approval for implementation into clinical practice. Although there exists a vast pool of structured and relatively clean datasets from which to develop and test algorithms in the computational 'laboratory', real-world validation remains key to allow for safe, equitable, and clinically reliable implementation. Bottlenecks in the validation process stem from a striking paucity of regulatory guidance surrounding safety and performance thresholds, lack of oversight on critical postdeployment monitoring and context-specific recalibration, and inherent complexities of heterogeneous disease states and clinical environments. Implementation of secure, third-party, unbiased, pre and postdeployment validation offers the potential to address existing shortfalls in the validation process.
Summary: Given the criticality of validation to the algorithm pipeline, there is an urgent need for developers, machine learning researchers, and end-user clinicians to devise a consensus approach, allowing for the rapid introduction of safe, equitable, and clinically valid machine learning implementations.
期刊介绍:
Current Opinion in Ophthalmology is an indispensable resource featuring key up-to-date and important advances in the field from around the world. With renowned guest editors for each section, every bimonthly issue of Current Opinion in Ophthalmology delivers a fresh insight into topics such as glaucoma, refractive surgery and corneal and external disorders. With ten sections in total, the journal provides a convenient and thorough review of the field and will be of interest to researchers, clinicians and other healthcare professionals alike.