Philipp Amrein, Fleming Bruckmaier, Feng Jia, Dominik B Bucher, Maxim Zaitsev, Sebastian Littin
{"title":"金刚石氮空位扩散加权核磁共振实验中最优双平面梯度线圈结构。","authors":"Philipp Amrein, Fleming Bruckmaier, Feng Jia, Dominik B Bucher, Maxim Zaitsev, Sebastian Littin","doi":"10.1007/s10334-023-01111-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diffusion weighting in optically detected magnetic resonance experiments involving diamond nitrogen-vacancy (NV) centers can provide valuable microstructural information. Bi-planar gradient coils employed for diffusion weighting afford excellent spatial access, essential for integrating the NV-NMR components. Nevertheless, owing to the polar tilt of roughly [Formula: see text] of the diamond NV center, the primary magnetic field direction must be taken into account accordingly.</p><p><strong>Methods: </strong>To determine the most effective bi-planar gradient coil configurations, we conducted an investigation into the impact of various factors, including the square side length, surface separation, and surface orientation. This was accomplished by generating over 500 bi-planar surface configurations using automated methods.</p><p><strong>Results: </strong>We successfully generated and evaluated coil layouts in terms of sensitivity and field accuracy. Interestingly, inclined bi-planar orientations close to the NV-NMR setup's requirement, showed higher sensitivity for the transverse gradient channels than horizontal or vertical orientations. We fabricated a suitable solution as a three-channel bi-planar double-layered PCB system and experimentally validated the sensitivities at [Formula: see text] and [Formula: see text] for the transverse [Formula: see text] and [Formula: see text] gradients, and [Formula: see text] for the [Formula: see text] gradient.</p><p><strong>Discussion: </strong>We found that the chosen relative bi-planar tilt of [Formula: see text] represents a reasonable compromise in terms of overall performance and allows for easier coil implementation with a straight, horizontal alignment within the overall experimental setup.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"921-932"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667408/pdf/","citationCount":"1","resultStr":"{\"title\":\"Optimal bi-planar gradient coil configurations for diamond nitrogen-vacancy based diffusion-weighted NMR experiments.\",\"authors\":\"Philipp Amrein, Fleming Bruckmaier, Feng Jia, Dominik B Bucher, Maxim Zaitsev, Sebastian Littin\",\"doi\":\"10.1007/s10334-023-01111-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Diffusion weighting in optically detected magnetic resonance experiments involving diamond nitrogen-vacancy (NV) centers can provide valuable microstructural information. Bi-planar gradient coils employed for diffusion weighting afford excellent spatial access, essential for integrating the NV-NMR components. Nevertheless, owing to the polar tilt of roughly [Formula: see text] of the diamond NV center, the primary magnetic field direction must be taken into account accordingly.</p><p><strong>Methods: </strong>To determine the most effective bi-planar gradient coil configurations, we conducted an investigation into the impact of various factors, including the square side length, surface separation, and surface orientation. This was accomplished by generating over 500 bi-planar surface configurations using automated methods.</p><p><strong>Results: </strong>We successfully generated and evaluated coil layouts in terms of sensitivity and field accuracy. Interestingly, inclined bi-planar orientations close to the NV-NMR setup's requirement, showed higher sensitivity for the transverse gradient channels than horizontal or vertical orientations. We fabricated a suitable solution as a three-channel bi-planar double-layered PCB system and experimentally validated the sensitivities at [Formula: see text] and [Formula: see text] for the transverse [Formula: see text] and [Formula: see text] gradients, and [Formula: see text] for the [Formula: see text] gradient.</p><p><strong>Discussion: </strong>We found that the chosen relative bi-planar tilt of [Formula: see text] represents a reasonable compromise in terms of overall performance and allows for easier coil implementation with a straight, horizontal alignment within the overall experimental setup.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"921-932\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667408/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-023-01111-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-023-01111-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Optimal bi-planar gradient coil configurations for diamond nitrogen-vacancy based diffusion-weighted NMR experiments.
Introduction: Diffusion weighting in optically detected magnetic resonance experiments involving diamond nitrogen-vacancy (NV) centers can provide valuable microstructural information. Bi-planar gradient coils employed for diffusion weighting afford excellent spatial access, essential for integrating the NV-NMR components. Nevertheless, owing to the polar tilt of roughly [Formula: see text] of the diamond NV center, the primary magnetic field direction must be taken into account accordingly.
Methods: To determine the most effective bi-planar gradient coil configurations, we conducted an investigation into the impact of various factors, including the square side length, surface separation, and surface orientation. This was accomplished by generating over 500 bi-planar surface configurations using automated methods.
Results: We successfully generated and evaluated coil layouts in terms of sensitivity and field accuracy. Interestingly, inclined bi-planar orientations close to the NV-NMR setup's requirement, showed higher sensitivity for the transverse gradient channels than horizontal or vertical orientations. We fabricated a suitable solution as a three-channel bi-planar double-layered PCB system and experimentally validated the sensitivities at [Formula: see text] and [Formula: see text] for the transverse [Formula: see text] and [Formula: see text] gradients, and [Formula: see text] for the [Formula: see text] gradient.
Discussion: We found that the chosen relative bi-planar tilt of [Formula: see text] represents a reasonable compromise in terms of overall performance and allows for easier coil implementation with a straight, horizontal alignment within the overall experimental setup.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.