Mohammad Mohtasim Hamid Pial, Asahi Tomitaka, Nezih Pala, Upal Roy
{"title":"用于治疗乳腺癌的植入式装置。","authors":"Mohammad Mohtasim Hamid Pial, Asahi Tomitaka, Nezih Pala, Upal Roy","doi":"10.3390/jnt3010003","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the leading causes of death in the female population worldwide. Standard treatments such as chemotherapy show noticeable results. However, along with killing cancer cells, it causes systemic toxicity and apoptosis of the nearby healthy cells, therefore patients must endure side effects during the treatment process. Implantable drug delivery devices that enhance therapeutic efficacy by allowing localized therapy with programmed or controlled drug release can overcome the shortcomings of conventional treatments. An implantable device can be composed of biopolymer materials, nanocomposite materials, or a combination of both. This review summarizes the recent research and current state-of-the art in these types of implantable devices and gives perspective for future directions.</p>","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":"3 1","pages":"19-38"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438892/pdf/","citationCount":"1","resultStr":"{\"title\":\"Implantable Devices for the Treatment of Breast Cancer.\",\"authors\":\"Mohammad Mohtasim Hamid Pial, Asahi Tomitaka, Nezih Pala, Upal Roy\",\"doi\":\"10.3390/jnt3010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is one of the leading causes of death in the female population worldwide. Standard treatments such as chemotherapy show noticeable results. However, along with killing cancer cells, it causes systemic toxicity and apoptosis of the nearby healthy cells, therefore patients must endure side effects during the treatment process. Implantable drug delivery devices that enhance therapeutic efficacy by allowing localized therapy with programmed or controlled drug release can overcome the shortcomings of conventional treatments. An implantable device can be composed of biopolymer materials, nanocomposite materials, or a combination of both. This review summarizes the recent research and current state-of-the art in these types of implantable devices and gives perspective for future directions.</p>\",\"PeriodicalId\":73846,\"journal\":{\"name\":\"Journal of nanotheranostics\",\"volume\":\"3 1\",\"pages\":\"19-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438892/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanotheranostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jnt3010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotheranostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jnt3010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implantable Devices for the Treatment of Breast Cancer.
Breast cancer is one of the leading causes of death in the female population worldwide. Standard treatments such as chemotherapy show noticeable results. However, along with killing cancer cells, it causes systemic toxicity and apoptosis of the nearby healthy cells, therefore patients must endure side effects during the treatment process. Implantable drug delivery devices that enhance therapeutic efficacy by allowing localized therapy with programmed or controlled drug release can overcome the shortcomings of conventional treatments. An implantable device can be composed of biopolymer materials, nanocomposite materials, or a combination of both. This review summarizes the recent research and current state-of-the art in these types of implantable devices and gives perspective for future directions.