Shemil P. Macelline , Peter V. Chrystal , Chanon Inanan , Mehdi Toghyani , Peter H. Selle , Sonia Yun Liu
{"title":"日粮粗蛋白浓度、粮型及精氨酸与赖氨酸比例对肉鸡生产性能的影响","authors":"Shemil P. Macelline , Peter V. Chrystal , Chanon Inanan , Mehdi Toghyani , Peter H. Selle , Sonia Yun Liu","doi":"10.1016/j.aninu.2023.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to investigate the effects of dietary crude protein (CP) concentrations, grain types and arginine:lysine ratios on performance parameters of broiler chickens. The 2 × 2 × 2 factorial array of dietary treatments harnessed two CP concentrations (210 and 170 g/kg), two feed grains (wheat and sorghum), and two arginine:lysine ratios (104 and 110). Each dietary treatment was offered to 7 replicates of 14 birds per floor pen, a total of 784 off-sex male, Ross 308 broilers, from 14 to 35 d post-hatch. The dietary CP reduction compromised weight gain by 10.0% (2078 versus 2310 g/bird) as a main effect and FCR by 7.51% (1.474 versus 1.371), subject to an interaction. In a three-way interaction (<em>P</em> = 0.008), expanded arginine:lysine ratios improved FCR by 2.30% in 170 g/kg CP, sorghum-based diets but compromised FCR by 2.12% in corresponding wheat-based diets. Sorghum was the more suitable feed grain in reduced-CP diets as sorghum generated significant advantages in weight gain of 7.59% (2154 versus 2002 g/kg) and FCR of 6.94% (1.421 versus 1.527) in birds offered 170 g/kg CP diets. Both dietary CP and feed grain generated significant and divergent impacts in apparent ileal digestibility coefficients for the majority of 16 assessed amino acids. Dietary CP reductions increased non-bound amino acid inclusions (NBAA) in wheat-based diets (48.96 versus 9.80 g/kg) to a greater extent than sorghum-based diets (35.3 versus 9.50 g/kg) and increasing dietary NBAA inclusions were linearly associated with compromised weight gain (<em>r</em> = −0.834; <em>P</em> < 0.001) and FCR (<em>r</em> = 0.862; <em>P</em> < 0.001). Increasing ratios of free arginine to lysine plasma concentrations were linearly (<em>r</em> = −0.466; <em>P</em> = 0.004) related to improvements in FCR. The implications of the observed outcomes are discussed and possible explanations are advanced.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"14 ","pages":"Pages 259-268"},"PeriodicalIF":6.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432908/pdf/","citationCount":"0","resultStr":"{\"title\":\"The influence of dietary crude protein concentrations, grain types and arginine:lysine ratios on the performance of broiler chickens\",\"authors\":\"Shemil P. Macelline , Peter V. Chrystal , Chanon Inanan , Mehdi Toghyani , Peter H. Selle , Sonia Yun Liu\",\"doi\":\"10.1016/j.aninu.2023.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study was to investigate the effects of dietary crude protein (CP) concentrations, grain types and arginine:lysine ratios on performance parameters of broiler chickens. The 2 × 2 × 2 factorial array of dietary treatments harnessed two CP concentrations (210 and 170 g/kg), two feed grains (wheat and sorghum), and two arginine:lysine ratios (104 and 110). Each dietary treatment was offered to 7 replicates of 14 birds per floor pen, a total of 784 off-sex male, Ross 308 broilers, from 14 to 35 d post-hatch. The dietary CP reduction compromised weight gain by 10.0% (2078 versus 2310 g/bird) as a main effect and FCR by 7.51% (1.474 versus 1.371), subject to an interaction. In a three-way interaction (<em>P</em> = 0.008), expanded arginine:lysine ratios improved FCR by 2.30% in 170 g/kg CP, sorghum-based diets but compromised FCR by 2.12% in corresponding wheat-based diets. Sorghum was the more suitable feed grain in reduced-CP diets as sorghum generated significant advantages in weight gain of 7.59% (2154 versus 2002 g/kg) and FCR of 6.94% (1.421 versus 1.527) in birds offered 170 g/kg CP diets. Both dietary CP and feed grain generated significant and divergent impacts in apparent ileal digestibility coefficients for the majority of 16 assessed amino acids. Dietary CP reductions increased non-bound amino acid inclusions (NBAA) in wheat-based diets (48.96 versus 9.80 g/kg) to a greater extent than sorghum-based diets (35.3 versus 9.50 g/kg) and increasing dietary NBAA inclusions were linearly associated with compromised weight gain (<em>r</em> = −0.834; <em>P</em> < 0.001) and FCR (<em>r</em> = 0.862; <em>P</em> < 0.001). Increasing ratios of free arginine to lysine plasma concentrations were linearly (<em>r</em> = −0.466; <em>P</em> = 0.004) related to improvements in FCR. The implications of the observed outcomes are discussed and possible explanations are advanced.</p></div>\",\"PeriodicalId\":62604,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"14 \",\"pages\":\"Pages 259-268\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405654523000653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405654523000653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The influence of dietary crude protein concentrations, grain types and arginine:lysine ratios on the performance of broiler chickens
The objective of this study was to investigate the effects of dietary crude protein (CP) concentrations, grain types and arginine:lysine ratios on performance parameters of broiler chickens. The 2 × 2 × 2 factorial array of dietary treatments harnessed two CP concentrations (210 and 170 g/kg), two feed grains (wheat and sorghum), and two arginine:lysine ratios (104 and 110). Each dietary treatment was offered to 7 replicates of 14 birds per floor pen, a total of 784 off-sex male, Ross 308 broilers, from 14 to 35 d post-hatch. The dietary CP reduction compromised weight gain by 10.0% (2078 versus 2310 g/bird) as a main effect and FCR by 7.51% (1.474 versus 1.371), subject to an interaction. In a three-way interaction (P = 0.008), expanded arginine:lysine ratios improved FCR by 2.30% in 170 g/kg CP, sorghum-based diets but compromised FCR by 2.12% in corresponding wheat-based diets. Sorghum was the more suitable feed grain in reduced-CP diets as sorghum generated significant advantages in weight gain of 7.59% (2154 versus 2002 g/kg) and FCR of 6.94% (1.421 versus 1.527) in birds offered 170 g/kg CP diets. Both dietary CP and feed grain generated significant and divergent impacts in apparent ileal digestibility coefficients for the majority of 16 assessed amino acids. Dietary CP reductions increased non-bound amino acid inclusions (NBAA) in wheat-based diets (48.96 versus 9.80 g/kg) to a greater extent than sorghum-based diets (35.3 versus 9.50 g/kg) and increasing dietary NBAA inclusions were linearly associated with compromised weight gain (r = −0.834; P < 0.001) and FCR (r = 0.862; P < 0.001). Increasing ratios of free arginine to lysine plasma concentrations were linearly (r = −0.466; P = 0.004) related to improvements in FCR. The implications of the observed outcomes are discussed and possible explanations are advanced.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.