TPP1抑制食管癌DNA损伤反应和化疗敏感性。

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Eukaryotic Gene Expression Pub Date : 2023-01-01 DOI:10.1615/CritRevEukaryotGeneExpr.2023048720
Jilin Wen, Xiaowu Zhong, Chuanli Gao, Miyuan Yang, Maoju Tang, Zichun Yuan, Qin Wang, Lei Xu, Qiang Ma, Xiaolan Guo, Li Fang
{"title":"TPP1抑制食管癌DNA损伤反应和化疗敏感性。","authors":"Jilin Wen,&nbsp;Xiaowu Zhong,&nbsp;Chuanli Gao,&nbsp;Miyuan Yang,&nbsp;Maoju Tang,&nbsp;Zichun Yuan,&nbsp;Qin Wang,&nbsp;Lei Xu,&nbsp;Qiang Ma,&nbsp;Xiaolan Guo,&nbsp;Li Fang","doi":"10.1615/CritRevEukaryotGeneExpr.2023048720","DOIUrl":null,"url":null,"abstract":"<p><p>TPP1, as one of the telomere-protective protein complex, functions to maintain telomere stability. In this study, we found that TPP1 was significantly upregulated in esophageal cancer (EC). We found that the proliferation and migration ability were significantly inhibited, while the results of flow cytometry assay indicated that the growth was hindered in the G1 phase after TPP1 knockdown. However, the proliferative viability and migratory ability were reversed after TPP1 overexpression in EC cells. Then, we found a significant increase in β-galactosidase positivity following TPP1 knockdown and the opposite following TPP1 overexpression in EC cells. Furthermore, TPP1 knockdown increased DNA damage and upregulated expression of the γ-H2AXS139 in the cell nucleus. Correspondingly, DNA damage was reversed after TPP1 overexpression in EC cells. Similarly, we found that the expression of ATM/ATR pathway proteins were upregulated after TPP1 knockdown, while the expression of the above proteins was downregulated after TPP1 overexpression in EC cells. TPP1 knockdown significantly inhibited the growth of transplanted tumors and upregulated the expression of ATM/ATR pathway proteins in transplanted tissues, whereas TPP1 overexpression significantly promoted their proliferation and downregulated the expression of the above proteins in vivo. Strikingly, we found that TPP1 could reduce the chemosensitivity of EC cells to cisplatin, which may have a potential link to clinical chemoresistance. In conclusion, TPP1 regulates the DNA damage response through the ATM/ATR-p53 signaling pathway and chemoresistance and may be a new target for improving the efficacy of chemotherapy in the treatment of EC.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"33 8","pages":"77-91"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TPP1 Inhibits DNA Damage Response and Chemosensitivity in Esophageal Cancer.\",\"authors\":\"Jilin Wen,&nbsp;Xiaowu Zhong,&nbsp;Chuanli Gao,&nbsp;Miyuan Yang,&nbsp;Maoju Tang,&nbsp;Zichun Yuan,&nbsp;Qin Wang,&nbsp;Lei Xu,&nbsp;Qiang Ma,&nbsp;Xiaolan Guo,&nbsp;Li Fang\",\"doi\":\"10.1615/CritRevEukaryotGeneExpr.2023048720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>TPP1, as one of the telomere-protective protein complex, functions to maintain telomere stability. In this study, we found that TPP1 was significantly upregulated in esophageal cancer (EC). We found that the proliferation and migration ability were significantly inhibited, while the results of flow cytometry assay indicated that the growth was hindered in the G1 phase after TPP1 knockdown. However, the proliferative viability and migratory ability were reversed after TPP1 overexpression in EC cells. Then, we found a significant increase in β-galactosidase positivity following TPP1 knockdown and the opposite following TPP1 overexpression in EC cells. Furthermore, TPP1 knockdown increased DNA damage and upregulated expression of the γ-H2AXS139 in the cell nucleus. Correspondingly, DNA damage was reversed after TPP1 overexpression in EC cells. Similarly, we found that the expression of ATM/ATR pathway proteins were upregulated after TPP1 knockdown, while the expression of the above proteins was downregulated after TPP1 overexpression in EC cells. TPP1 knockdown significantly inhibited the growth of transplanted tumors and upregulated the expression of ATM/ATR pathway proteins in transplanted tissues, whereas TPP1 overexpression significantly promoted their proliferation and downregulated the expression of the above proteins in vivo. Strikingly, we found that TPP1 could reduce the chemosensitivity of EC cells to cisplatin, which may have a potential link to clinical chemoresistance. In conclusion, TPP1 regulates the DNA damage response through the ATM/ATR-p53 signaling pathway and chemoresistance and may be a new target for improving the efficacy of chemotherapy in the treatment of EC.</p>\",\"PeriodicalId\":56317,\"journal\":{\"name\":\"Critical Reviews in Eukaryotic Gene Expression\",\"volume\":\"33 8\",\"pages\":\"77-91\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Eukaryotic Gene Expression\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023048720\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023048720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

TPP1作为端粒保护蛋白复合体之一,具有维持端粒稳定的功能。在本研究中,我们发现TPP1在食管癌(EC)中显著上调。我们发现细胞的增殖和迁移能力明显受到抑制,而流式细胞术检测结果显示,TPP1敲低后,细胞生长在G1期受到阻碍。然而,TPP1过表达后,EC细胞的增殖活力和迁移能力发生逆转。然后,我们发现在EC细胞中,TPP1敲低后β-半乳糖苷酶阳性显著增加,而TPP1过表达后则相反。此外,TPP1敲低会增加细胞核DNA损伤和上调γ-H2AXS139的表达。相应地,在EC细胞中,TPP1过表达后DNA损伤得到逆转。同样,我们发现在EC细胞中,TPP1敲低后,ATM/ATR通路蛋白的表达上调,而TPP1过表达后,上述蛋白的表达下调。TPP1敲低可显著抑制移植肿瘤的生长,上调移植组织中ATM/ATR通路蛋白的表达,而TPP1过表达可显著促进移植肿瘤的增殖,下调移植组织中上述蛋白的表达。引人注目的是,我们发现TPP1可以降低EC细胞对顺铂的化疗敏感性,这可能与临床化疗耐药有潜在的联系。综上所述,TPP1通过ATM/ATR-p53信号通路调控DNA损伤反应和化疗耐药,可能成为提高化疗治疗EC疗效的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TPP1 Inhibits DNA Damage Response and Chemosensitivity in Esophageal Cancer.

TPP1, as one of the telomere-protective protein complex, functions to maintain telomere stability. In this study, we found that TPP1 was significantly upregulated in esophageal cancer (EC). We found that the proliferation and migration ability were significantly inhibited, while the results of flow cytometry assay indicated that the growth was hindered in the G1 phase after TPP1 knockdown. However, the proliferative viability and migratory ability were reversed after TPP1 overexpression in EC cells. Then, we found a significant increase in β-galactosidase positivity following TPP1 knockdown and the opposite following TPP1 overexpression in EC cells. Furthermore, TPP1 knockdown increased DNA damage and upregulated expression of the γ-H2AXS139 in the cell nucleus. Correspondingly, DNA damage was reversed after TPP1 overexpression in EC cells. Similarly, we found that the expression of ATM/ATR pathway proteins were upregulated after TPP1 knockdown, while the expression of the above proteins was downregulated after TPP1 overexpression in EC cells. TPP1 knockdown significantly inhibited the growth of transplanted tumors and upregulated the expression of ATM/ATR pathway proteins in transplanted tissues, whereas TPP1 overexpression significantly promoted their proliferation and downregulated the expression of the above proteins in vivo. Strikingly, we found that TPP1 could reduce the chemosensitivity of EC cells to cisplatin, which may have a potential link to clinical chemoresistance. In conclusion, TPP1 regulates the DNA damage response through the ATM/ATR-p53 signaling pathway and chemoresistance and may be a new target for improving the efficacy of chemotherapy in the treatment of EC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Eukaryotic Gene Expression
Critical Reviews in Eukaryotic Gene Expression 生物-生物工程与应用微生物
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
1 months
期刊介绍: Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource. Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.
期刊最新文献
Exosomal circ_001860 promotes colorectal cancer progression through miR-582-5p/ZEB1 axis Glycosaminoglycans (GAGs) adenogenesis factors: immunohistochemical espression in endometriosis tissues compared to the endometrium Curcumin-carbon dots suppress periodontitis via regulating METTL3/IRE1α signaling DNMT1-dependent DNA methylation of lncRNA FTX inhibits the ferroptosis of hepatocellular carcinoma A Review: The bioactivities and mechanisms of fungus extracts and compounds in colon cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1