Donna McNeale, Noor Dashti, Li Chen Cheah, Frank Sainsbury
{"title":"病毒样颗粒对蛋白质货物的封装:策略和应用。","authors":"Donna McNeale, Noor Dashti, Li Chen Cheah, Frank Sainsbury","doi":"10.1002/wnan.1869","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1869"},"PeriodicalIF":6.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Protein cargo encapsulation by virus-like particles: Strategies and applications.\",\"authors\":\"Donna McNeale, Noor Dashti, Li Chen Cheah, Frank Sainsbury\",\"doi\":\"10.1002/wnan.1869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.</p>\",\"PeriodicalId\":23697,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"15 3\",\"pages\":\"e1869\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1869\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1869","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Protein cargo encapsulation by virus-like particles: Strategies and applications.
Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.