Yong Jiang, Chun-Hui Xu, Ying Zhao, Yun-Han Ji, Xin-Tao Wang, Ying Liu
{"title":"LINC00926通过miR-3194-5p调控JAK1/STAT3信号通路参与缺氧诱导的血管内皮细胞功能障碍。","authors":"Yong Jiang, Chun-Hui Xu, Ying Zhao, Yun-Han Ji, Xin-Tao Wang, Ying Liu","doi":"10.4081/ejh.2023.3526","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular endothelial cell (VEC) dysfunction is associated with the development of coronary heart disease (CHD). Long intergenic non-protein coding RNA 926 (LINC00926), a kind of long noncoding RNA (lncRNA), has been found to be abnormally expressed in CHD patients. However, the biological role of LINC00926 has not been reported. In our research, we intended to explore the regulatory mechanism of LINC00926 in hypoxia-exposed HUVEC cells (HUVECs). In our in vitro study, HUVECs were exposed under hypoxic conditions (5% O2) for 24 h. RT-qPCR and Western blotting assay were used to detect the mRNA and protein levels. CCK-8 assay, flow cytometry, transwell assay and in vitro angiogenesis assay were performed to measure cell proliferation, apoptosis, migration and tube formation, respectively. Bioinformatics analysis was applied to predict the target of LINC00926 and miR-3194-5p, which was verified by dual-luciferase reporter assays. The results showed that LINC00926 was highly expressed in CHD patients and hypoxia-exposed HUVECs. LINC00926 overexpression suppressed cell proliferation, migration and tube formation and increased cell apoptosis. MiR-3194-5p was a target of LINC00926 and can target binding to JAK1 3'UTR. LINC00926 could up-regulate JAK1 and p-STAT3 levels via miR-3194-5p. In addition, overexpressed LINC00926 suppressed cell proliferation, migration and tube formation and increased cell apoptosis via miR-3194-5p/JAK1/STAT3 axis. In summary, LINC00926 aggravated endothelial cell dysfunction via miR-3194-5p regulating JAK1/STAT3 signaling pathway in hypoxia-exposed HUVECs.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"67 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/ad/ejh-67-1-3526.PMC10300425.pdf","citationCount":"1","resultStr":"{\"title\":\"LINC00926 is involved in hypoxia-induced vascular endothelial cell dysfunction <i>via</i> miR-3194-5p regulating JAK1/STAT3 signaling pathway.\",\"authors\":\"Yong Jiang, Chun-Hui Xu, Ying Zhao, Yun-Han Ji, Xin-Tao Wang, Ying Liu\",\"doi\":\"10.4081/ejh.2023.3526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular endothelial cell (VEC) dysfunction is associated with the development of coronary heart disease (CHD). Long intergenic non-protein coding RNA 926 (LINC00926), a kind of long noncoding RNA (lncRNA), has been found to be abnormally expressed in CHD patients. However, the biological role of LINC00926 has not been reported. In our research, we intended to explore the regulatory mechanism of LINC00926 in hypoxia-exposed HUVEC cells (HUVECs). In our in vitro study, HUVECs were exposed under hypoxic conditions (5% O2) for 24 h. RT-qPCR and Western blotting assay were used to detect the mRNA and protein levels. CCK-8 assay, flow cytometry, transwell assay and in vitro angiogenesis assay were performed to measure cell proliferation, apoptosis, migration and tube formation, respectively. Bioinformatics analysis was applied to predict the target of LINC00926 and miR-3194-5p, which was verified by dual-luciferase reporter assays. The results showed that LINC00926 was highly expressed in CHD patients and hypoxia-exposed HUVECs. LINC00926 overexpression suppressed cell proliferation, migration and tube formation and increased cell apoptosis. MiR-3194-5p was a target of LINC00926 and can target binding to JAK1 3'UTR. LINC00926 could up-regulate JAK1 and p-STAT3 levels via miR-3194-5p. In addition, overexpressed LINC00926 suppressed cell proliferation, migration and tube formation and increased cell apoptosis via miR-3194-5p/JAK1/STAT3 axis. In summary, LINC00926 aggravated endothelial cell dysfunction via miR-3194-5p regulating JAK1/STAT3 signaling pathway in hypoxia-exposed HUVECs.</p>\",\"PeriodicalId\":50487,\"journal\":{\"name\":\"European Journal of Histochemistry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/ad/ejh-67-1-3526.PMC10300425.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Histochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4081/ejh.2023.3526\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Histochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4081/ejh.2023.3526","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
LINC00926 is involved in hypoxia-induced vascular endothelial cell dysfunction via miR-3194-5p regulating JAK1/STAT3 signaling pathway.
Vascular endothelial cell (VEC) dysfunction is associated with the development of coronary heart disease (CHD). Long intergenic non-protein coding RNA 926 (LINC00926), a kind of long noncoding RNA (lncRNA), has been found to be abnormally expressed in CHD patients. However, the biological role of LINC00926 has not been reported. In our research, we intended to explore the regulatory mechanism of LINC00926 in hypoxia-exposed HUVEC cells (HUVECs). In our in vitro study, HUVECs were exposed under hypoxic conditions (5% O2) for 24 h. RT-qPCR and Western blotting assay were used to detect the mRNA and protein levels. CCK-8 assay, flow cytometry, transwell assay and in vitro angiogenesis assay were performed to measure cell proliferation, apoptosis, migration and tube formation, respectively. Bioinformatics analysis was applied to predict the target of LINC00926 and miR-3194-5p, which was verified by dual-luciferase reporter assays. The results showed that LINC00926 was highly expressed in CHD patients and hypoxia-exposed HUVECs. LINC00926 overexpression suppressed cell proliferation, migration and tube formation and increased cell apoptosis. MiR-3194-5p was a target of LINC00926 and can target binding to JAK1 3'UTR. LINC00926 could up-regulate JAK1 and p-STAT3 levels via miR-3194-5p. In addition, overexpressed LINC00926 suppressed cell proliferation, migration and tube formation and increased cell apoptosis via miR-3194-5p/JAK1/STAT3 axis. In summary, LINC00926 aggravated endothelial cell dysfunction via miR-3194-5p regulating JAK1/STAT3 signaling pathway in hypoxia-exposed HUVECs.
期刊介绍:
The Journal publishes original papers concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques. Coverage extends to:
functional cell and tissue biology in animals and plants;
cell differentiation and death;
cell-cell interaction and molecular trafficking;
biology of cell development and senescence;
nerve and muscle cell biology;
cellular basis of diseases.
The histochemical approach is nowadays essentially aimed at locating molecules in the very place where they exert their biological roles, and at describing dynamically specific chemical activities in living cells. Basic research on cell functional organization is essential for understanding the mechanisms underlying major biological processes such as differentiation, the control of tissue homeostasis, and the regulation of normal and tumor cell growth. Even more than in the past, the European Journal of Histochemistry, as a journal of functional cytology, represents the venue where cell scientists may present and discuss their original results, technical improvements and theories.