颅骨形态学的多变量分析为geomyoid啮齿动物的分类和进化提供了信息。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-08-01 DOI:10.1093/cz/zoac055
Lily A Noftz, Jonathan J M Calede
{"title":"颅骨形态学的多变量分析为geomyoid啮齿动物的分类和进化提供了信息。","authors":"Lily A Noftz,&nbsp;Jonathan J M Calede","doi":"10.1093/cz/zoac055","DOIUrl":null,"url":null,"abstract":"<p><p>Morphological analyses are critical to quantify phenotypic variation, identify taxa, inform phylogenetic relationships, and shed light on evolutionary patterns. This work is particularly important in groups that display great morphological disparity. Such is the case in geomyoid rodents, a group that includes 2 of the most species-rich families of rodents in North America: the Geomyidae (pocket gophers) and the Heteromyidae (kangaroo rats, pocket mice, and their relatives). We assessed variation in skull morphology (including both shape and size) among geomyoids to test the hypothesis that there are statistically significant differences in skull measurements at the family, genus, and species levels. Our sample includes 886 specimens representing all geomyoid genera and 39 species. We used the geometric mean to compare size across taxa. We used 14 measurements of the cranium and lower jaw normalized for size to compare shape among and within taxa. Our results show that skull measurements enable the distinction of geomyoids at the family, genus, and species levels. There is a larger amount of size variation within Geomyidae than within Heteromyidae. Our phylomorphospace analysis shows that the skull shape of the common ancestor of all geomyoids was more similar to the common ancestor of heteromyids than that of geomyids. Geomyid skulls display negative allometry whereas heteromyid skulls display positive allometry. Within heteromyids, dipodomyines, and non-dipodomyines show significantly different allometric patterns. Future analyses including fossils will be necessary to test our evolutionary hypotheses.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/90/43/zoac055.PMC10443661.pdf","citationCount":"1","resultStr":"{\"title\":\"Multivariate analyses of skull morphology inform the taxonomy and evolution of geomyoid rodents.\",\"authors\":\"Lily A Noftz,&nbsp;Jonathan J M Calede\",\"doi\":\"10.1093/cz/zoac055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morphological analyses are critical to quantify phenotypic variation, identify taxa, inform phylogenetic relationships, and shed light on evolutionary patterns. This work is particularly important in groups that display great morphological disparity. Such is the case in geomyoid rodents, a group that includes 2 of the most species-rich families of rodents in North America: the Geomyidae (pocket gophers) and the Heteromyidae (kangaroo rats, pocket mice, and their relatives). We assessed variation in skull morphology (including both shape and size) among geomyoids to test the hypothesis that there are statistically significant differences in skull measurements at the family, genus, and species levels. Our sample includes 886 specimens representing all geomyoid genera and 39 species. We used the geometric mean to compare size across taxa. We used 14 measurements of the cranium and lower jaw normalized for size to compare shape among and within taxa. Our results show that skull measurements enable the distinction of geomyoids at the family, genus, and species levels. There is a larger amount of size variation within Geomyidae than within Heteromyidae. Our phylomorphospace analysis shows that the skull shape of the common ancestor of all geomyoids was more similar to the common ancestor of heteromyids than that of geomyids. Geomyid skulls display negative allometry whereas heteromyid skulls display positive allometry. Within heteromyids, dipodomyines, and non-dipodomyines show significantly different allometric patterns. Future analyses including fossils will be necessary to test our evolutionary hypotheses.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/90/43/zoac055.PMC10443661.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/cz/zoac055\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/cz/zoac055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

形态学分析对于量化表型变异、识别分类群、告知系统发育关系和阐明进化模式至关重要。这项工作在表现出巨大形态差异的群体中尤为重要。这就是土齿类啮齿类动物的情况,这一群体包括北美物种最丰富的两个啮齿动物家族:土齿科(口袋地鼠)和异齿科(袋鼠鼠、口袋鼠及其亲属)。我们评估了不同类人猿颅骨形态(包括形状和大小)的变化,以检验在科、属和种水平上颅骨测量存在统计学显著差异的假设。我们的样本包括886个标本,代表了所有的geomoid属和39种。我们使用几何平均值来比较不同分类群的大小。我们使用了14个头盖骨和下颌的尺寸标准化的测量来比较类群之间和内部的形状。我们的研究结果表明,头骨测量能够在科,属和种水平上区分geomoid。土足科的大小变异比异足科的大。我们的颅形态空间分析表明,所有geomyoids的共同祖先的头骨形状更接近异异种而不是geomyoids的共同祖先。同种异体颅骨表现为负异速,而异速颅骨表现为正异速。在异胚中,异足精和非异足精表现出显著不同的异速生长模式。包括化石在内的未来分析将有必要检验我们的进化假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate analyses of skull morphology inform the taxonomy and evolution of geomyoid rodents.

Morphological analyses are critical to quantify phenotypic variation, identify taxa, inform phylogenetic relationships, and shed light on evolutionary patterns. This work is particularly important in groups that display great morphological disparity. Such is the case in geomyoid rodents, a group that includes 2 of the most species-rich families of rodents in North America: the Geomyidae (pocket gophers) and the Heteromyidae (kangaroo rats, pocket mice, and their relatives). We assessed variation in skull morphology (including both shape and size) among geomyoids to test the hypothesis that there are statistically significant differences in skull measurements at the family, genus, and species levels. Our sample includes 886 specimens representing all geomyoid genera and 39 species. We used the geometric mean to compare size across taxa. We used 14 measurements of the cranium and lower jaw normalized for size to compare shape among and within taxa. Our results show that skull measurements enable the distinction of geomyoids at the family, genus, and species levels. There is a larger amount of size variation within Geomyidae than within Heteromyidae. Our phylomorphospace analysis shows that the skull shape of the common ancestor of all geomyoids was more similar to the common ancestor of heteromyids than that of geomyids. Geomyid skulls display negative allometry whereas heteromyid skulls display positive allometry. Within heteromyids, dipodomyines, and non-dipodomyines show significantly different allometric patterns. Future analyses including fossils will be necessary to test our evolutionary hypotheses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1