{"title":"后新冠肺炎时代社会软技能需求的出现。","authors":"Giorgio Gnecco, Sara Landi, Massimo Riccaboni","doi":"10.1007/s11135-023-01659-y","DOIUrl":null,"url":null,"abstract":"<p><p>Social soft skills are crucial for workers to perform their tasks, yet it is hard to train people on them and to readapt their skill set when needed. In the present work, we analyze the possible effects of the COVID-19 pandemic on social soft skills in the context of Italian occupations related to 88 economic sectors and 14 age groups. We leverage detailed information coming from ICP (i.e. the Italian equivalent of O*Net), provided by the Italian National Institute for the Analysis of Public Policy, from the microdata for research on the continuous detection of labor force, provided by the Italian National Institute of Statistics (ISTAT), and from ISTAT data on the Italian population. Based on these data, we simulate the impact of COVID-19 on workplace characteristics and working styles that were more severely affected by the lockdown measures and the sanitary dispositions during the pandemic (e.g. physical proximity, face-to-face discussions, working remotely). We then apply matrix completion-a machine-learning technique often used in the context of recommender systems-to predict the average variation in the social soft skills importance levels required for each occupation when working conditions change, as some changes might be persistent in the near future. Professions, sectors, and age groups showing negative average variations are exposed to a deficit in their social soft-skills endowment, which might ultimately lead to lower productivity.</p>","PeriodicalId":49649,"journal":{"name":"Quality & Quantity","volume":" ","pages":"1-34"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107589/pdf/","citationCount":"1","resultStr":"{\"title\":\"The emergence of social soft skill needs in the post COVID-19 era.\",\"authors\":\"Giorgio Gnecco, Sara Landi, Massimo Riccaboni\",\"doi\":\"10.1007/s11135-023-01659-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social soft skills are crucial for workers to perform their tasks, yet it is hard to train people on them and to readapt their skill set when needed. In the present work, we analyze the possible effects of the COVID-19 pandemic on social soft skills in the context of Italian occupations related to 88 economic sectors and 14 age groups. We leverage detailed information coming from ICP (i.e. the Italian equivalent of O*Net), provided by the Italian National Institute for the Analysis of Public Policy, from the microdata for research on the continuous detection of labor force, provided by the Italian National Institute of Statistics (ISTAT), and from ISTAT data on the Italian population. Based on these data, we simulate the impact of COVID-19 on workplace characteristics and working styles that were more severely affected by the lockdown measures and the sanitary dispositions during the pandemic (e.g. physical proximity, face-to-face discussions, working remotely). We then apply matrix completion-a machine-learning technique often used in the context of recommender systems-to predict the average variation in the social soft skills importance levels required for each occupation when working conditions change, as some changes might be persistent in the near future. Professions, sectors, and age groups showing negative average variations are exposed to a deficit in their social soft-skills endowment, which might ultimately lead to lower productivity.</p>\",\"PeriodicalId\":49649,\"journal\":{\"name\":\"Quality & Quantity\",\"volume\":\" \",\"pages\":\"1-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107589/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality & Quantity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11135-023-01659-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality & Quantity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11135-023-01659-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
The emergence of social soft skill needs in the post COVID-19 era.
Social soft skills are crucial for workers to perform their tasks, yet it is hard to train people on them and to readapt their skill set when needed. In the present work, we analyze the possible effects of the COVID-19 pandemic on social soft skills in the context of Italian occupations related to 88 economic sectors and 14 age groups. We leverage detailed information coming from ICP (i.e. the Italian equivalent of O*Net), provided by the Italian National Institute for the Analysis of Public Policy, from the microdata for research on the continuous detection of labor force, provided by the Italian National Institute of Statistics (ISTAT), and from ISTAT data on the Italian population. Based on these data, we simulate the impact of COVID-19 on workplace characteristics and working styles that were more severely affected by the lockdown measures and the sanitary dispositions during the pandemic (e.g. physical proximity, face-to-face discussions, working remotely). We then apply matrix completion-a machine-learning technique often used in the context of recommender systems-to predict the average variation in the social soft skills importance levels required for each occupation when working conditions change, as some changes might be persistent in the near future. Professions, sectors, and age groups showing negative average variations are exposed to a deficit in their social soft-skills endowment, which might ultimately lead to lower productivity.
期刊介绍:
Quality and Quantity constitutes a point of reference for European and non-European scholars to discuss instruments of methodology for more rigorous scientific results in the social sciences. In the era of biggish data, the journal also provides a publication venue for data scientists who are interested in proposing a new indicator to measure the latent aspects of social, cultural, and political events. Rather than leaning towards one specific methodological school, the journal publishes papers on a mixed method of quantitative and qualitative data. Furthermore, the journal’s key aim is to tackle some methodological pluralism across research cultures. In this context, the journal is open to papers addressing some general logic of empirical research and analysis of the validity and verification of social laws. Thus The journal accepts papers on science metrics and publication ethics and, their related issues affecting methodological practices among researchers.
Quality and Quantity is an interdisciplinary journal which systematically correlates disciplines such as data and information sciences with the other humanities and social sciences. The journal extends discussion of interesting contributions in methodology to scholars worldwide, to promote the scientific development of social research.