Young Jun Hwang, Gun Ho Kim, Min Jae Kim, Kyoung Won Nam
{"title":"基于深度学习的实时静脉药物袋状态监测技术。","authors":"Young Jun Hwang, Gun Ho Kim, Min Jae Kim, Kyoung Won Nam","doi":"10.1007/s13534-023-00292-w","DOIUrl":null,"url":null,"abstract":"<p><p>Accidents related to the administration of intravenous (IV) medication, such as drug overdose/underdose, drug/patient mis-identification, and delayed bag exchange, occur consistently in clinical fields. Several previous studies have suggested various contact-sensing and image-processing methodologies; however, most of them can increase the workload of nursing staffs during the long-term, continuous monitoring. In this study, we proposed a smart IV pole that can monitor the infusion status of up to four IV medications (patient/drug identification, and liquid residue) with various sizes and hanging positions to reduce IV-related accidents and improve patient safety with the least additional workload; the system consists of 12 cameras, one code scanner, and four controllers. Two types of deep learning models for automated camera selection (CNN-1) and liquid residue monitoring (CNN-2), and three drug residue estimation equations were implemented. The experimental results demonstrated that the accuracy of identification code-checking (60 tests) was 100%. The classification accuracy and the mean inference time of CNN-1 (1200 tests) were 100% and 140 ms. The mean average precision and the mean inference time of CNN-2 (300 tests) were 0.94 and 144 ms. The average error rates between the alarm setting (20, 30, and 40 mL) and the actual drug residue when the alarm first generated were 4.00%, 7.33%, and 4.50% for a 1,000 mL bag; 6.00%, 4.67%, and 2.50% for a 500 mL bag; and 3.00%, 6.00%, and 3.50% for a 100 mL bag, respectively. Our results suggest that the implemented AI-based prototype IV pole is a potential tool for reducing IV-related accidents and improving in-hospital patient safety.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13534-023-00292-w.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":" ","pages":"1-10"},"PeriodicalIF":3.2000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based monitoring technique for real-time intravenous medication bag status.\",\"authors\":\"Young Jun Hwang, Gun Ho Kim, Min Jae Kim, Kyoung Won Nam\",\"doi\":\"10.1007/s13534-023-00292-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accidents related to the administration of intravenous (IV) medication, such as drug overdose/underdose, drug/patient mis-identification, and delayed bag exchange, occur consistently in clinical fields. Several previous studies have suggested various contact-sensing and image-processing methodologies; however, most of them can increase the workload of nursing staffs during the long-term, continuous monitoring. In this study, we proposed a smart IV pole that can monitor the infusion status of up to four IV medications (patient/drug identification, and liquid residue) with various sizes and hanging positions to reduce IV-related accidents and improve patient safety with the least additional workload; the system consists of 12 cameras, one code scanner, and four controllers. Two types of deep learning models for automated camera selection (CNN-1) and liquid residue monitoring (CNN-2), and three drug residue estimation equations were implemented. The experimental results demonstrated that the accuracy of identification code-checking (60 tests) was 100%. The classification accuracy and the mean inference time of CNN-1 (1200 tests) were 100% and 140 ms. The mean average precision and the mean inference time of CNN-2 (300 tests) were 0.94 and 144 ms. The average error rates between the alarm setting (20, 30, and 40 mL) and the actual drug residue when the alarm first generated were 4.00%, 7.33%, and 4.50% for a 1,000 mL bag; 6.00%, 4.67%, and 2.50% for a 500 mL bag; and 3.00%, 6.00%, and 3.50% for a 100 mL bag, respectively. Our results suggest that the implemented AI-based prototype IV pole is a potential tool for reducing IV-related accidents and improving in-hospital patient safety.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13534-023-00292-w.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-023-00292-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-023-00292-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Deep learning-based monitoring technique for real-time intravenous medication bag status.
Accidents related to the administration of intravenous (IV) medication, such as drug overdose/underdose, drug/patient mis-identification, and delayed bag exchange, occur consistently in clinical fields. Several previous studies have suggested various contact-sensing and image-processing methodologies; however, most of them can increase the workload of nursing staffs during the long-term, continuous monitoring. In this study, we proposed a smart IV pole that can monitor the infusion status of up to four IV medications (patient/drug identification, and liquid residue) with various sizes and hanging positions to reduce IV-related accidents and improve patient safety with the least additional workload; the system consists of 12 cameras, one code scanner, and four controllers. Two types of deep learning models for automated camera selection (CNN-1) and liquid residue monitoring (CNN-2), and three drug residue estimation equations were implemented. The experimental results demonstrated that the accuracy of identification code-checking (60 tests) was 100%. The classification accuracy and the mean inference time of CNN-1 (1200 tests) were 100% and 140 ms. The mean average precision and the mean inference time of CNN-2 (300 tests) were 0.94 and 144 ms. The average error rates between the alarm setting (20, 30, and 40 mL) and the actual drug residue when the alarm first generated were 4.00%, 7.33%, and 4.50% for a 1,000 mL bag; 6.00%, 4.67%, and 2.50% for a 500 mL bag; and 3.00%, 6.00%, and 3.50% for a 100 mL bag, respectively. Our results suggest that the implemented AI-based prototype IV pole is a potential tool for reducing IV-related accidents and improving in-hospital patient safety.
Supplementary information: The online version contains supplementary material available at 10.1007/s13534-023-00292-w.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.