Tolga Zorlu, Begoña Puértolas, I. Brian Becerril-Castro, Luca Guerrini, Vincenzo Giannini, Miguel A. Correa-Duarte* and Ramon A. Alvarez-Puebla*,
{"title":"用金属有机框架和离子选择性染料包覆的等离子体纳米微珠光学定量分析金属离子","authors":"Tolga Zorlu, Begoña Puértolas, I. Brian Becerril-Castro, Luca Guerrini, Vincenzo Giannini, Miguel A. Correa-Duarte* and Ramon A. Alvarez-Puebla*, ","doi":"10.1021/acsnanoscienceau.2c00063","DOIUrl":null,"url":null,"abstract":"<p >Herein, we designed and synthesized a hybrid material comprising polystyrene submicrobeads coated with silver nanospheres. This material provides a dense collection of electromagnetic hot spots upon illumination with visible light. The subsequent coating with a metal-framework and the adsorption of bathocuproine on it yield an optical sensor for SERS that can specifically detect Cu(II) in a variety of aqueous samples at the ultratrace level. Detection limits with this method are superior to those of induced coupled plasma or atomic absorption and comparable with those obtained with induced coupled plasma coupled with a mass detector.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 3","pages":"222–229"},"PeriodicalIF":4.8000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00063","citationCount":"3","resultStr":"{\"title\":\"Optical Quantification of Metal Ions Using Plasmonic Nanostructured Microbeads Coated with Metal–Organic Frameworks and Ion-Selective Dyes\",\"authors\":\"Tolga Zorlu, Begoña Puértolas, I. Brian Becerril-Castro, Luca Guerrini, Vincenzo Giannini, Miguel A. Correa-Duarte* and Ramon A. Alvarez-Puebla*, \",\"doi\":\"10.1021/acsnanoscienceau.2c00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein, we designed and synthesized a hybrid material comprising polystyrene submicrobeads coated with silver nanospheres. This material provides a dense collection of electromagnetic hot spots upon illumination with visible light. The subsequent coating with a metal-framework and the adsorption of bathocuproine on it yield an optical sensor for SERS that can specifically detect Cu(II) in a variety of aqueous samples at the ultratrace level. Detection limits with this method are superior to those of induced coupled plasma or atomic absorption and comparable with those obtained with induced coupled plasma coupled with a mass detector.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"3 3\",\"pages\":\"222–229\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.2c00063\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Optical Quantification of Metal Ions Using Plasmonic Nanostructured Microbeads Coated with Metal–Organic Frameworks and Ion-Selective Dyes
Herein, we designed and synthesized a hybrid material comprising polystyrene submicrobeads coated with silver nanospheres. This material provides a dense collection of electromagnetic hot spots upon illumination with visible light. The subsequent coating with a metal-framework and the adsorption of bathocuproine on it yield an optical sensor for SERS that can specifically detect Cu(II) in a variety of aqueous samples at the ultratrace level. Detection limits with this method are superior to those of induced coupled plasma or atomic absorption and comparable with those obtained with induced coupled plasma coupled with a mass detector.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.