用于治疗 HER-2 阳性乳腺癌的抗体结合 pH 值敏感脂质体:开发、表征、体外和体内评估。

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Liposome Research Pub Date : 2024-06-01 Epub Date: 2023-08-28 DOI:10.1080/08982104.2023.2248505
Sarjana Raikwar, Vivek Yadav, Sanyog Jain, Sanjay K Jain
{"title":"用于治疗 HER-2 阳性乳腺癌的抗体结合 pH 值敏感脂质体:开发、表征、体外和体内评估。","authors":"Sarjana Raikwar, Vivek Yadav, Sanyog Jain, Sanjay K Jain","doi":"10.1080/08982104.2023.2248505","DOIUrl":null,"url":null,"abstract":"<p><p>The object of the current study was to develop and evaluate trastuzumab-conjugated Paclitaxel (PTX) and Elacridar (ELA)-loaded PEGylated pH-sensitive liposomes (TPPLs) for site-specific delivery of an anticancer drug. In this study, paclitaxel is used as an anticancer drug which promotes microtubules polymerization and arrest cell cycle progression at mitosis and subsequently leading to cell death. The single use of PTX causes multiple drug resistance (MDR) and results failure of the therapy. Hence, the combination of PTX and P-glycoprotein inhibitor (ELA) are used to achieve maximum therapeutic effects of PTX. Moreover, monoclonal antibody (trastuzumab) is used as ligand for the targeting the drug bearing carriers to BC. Thus, trastuzumab anchored pH-sensitive liposomes bearing PTX and ELA were developed using thin film hydration method and Box-Behnken Design (BBD) for optimizing various formulation variables. The optimized liposomes undergo characterization such as vesicle size, PDI, and zeta potential, which were observed to be 122 ± 2.14 nm, 0.224, and -15.5 mV for PEGylated pH-sensitive liposomes (PEG-Ls) and 134 ± 1.88 nm, 0.238, and -13.98 mV for TPPLs, respectively. The results of the <i>in vitro</i> drug release study of both formulations (PEG-Ls and TPPLs) showed enhanced percentage drug release at an acidic pH 5 as compared to drug release at a physiological pH 7.4. Further, the <i>in vitro</i> cytotoxicity studies were performed in the SK-BR-3 and MDA-MB-231 cell lines. The cellular uptake study of FITC-loaded TPPLs in SK-BR-3 cells showed greater uptake than FITC-loaded PEG-Ls, while in MDA-MB-231 cells there was no significant difference in cell uptake between FITC-loaded TPPLs and FITC-loaded PEG-Ls. Hence, it can be concluded that the HER-2 overexpressing cancer cell line (SK-BR-3) was showed better cytotoxicity and cell uptake of TPPLs than the cells that expressed low levels of HER2 (MDA-MB-231). The <i>in vivo</i> tumor regression study, TPPLs showed significantly more tumor burden reduction i.e. up ∼74% as compared to other liposomes after 28 days. Furthermore, the <i>in vivo</i> studies of TPPLs showed a minimal toxicity profile, minimal hemolysis, higher tumor tissue distribution, and superior antitumor efficacy as compared to other formulations. These studies confirmed that TPPLs are a safe and efficacious treatment for breast cancer.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"239-263"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibody-conjugated pH-sensitive liposomes for HER-2 positive breast cancer: development, characterization, <i>in vitro</i> and <i>in vivo</i> assessment.\",\"authors\":\"Sarjana Raikwar, Vivek Yadav, Sanyog Jain, Sanjay K Jain\",\"doi\":\"10.1080/08982104.2023.2248505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The object of the current study was to develop and evaluate trastuzumab-conjugated Paclitaxel (PTX) and Elacridar (ELA)-loaded PEGylated pH-sensitive liposomes (TPPLs) for site-specific delivery of an anticancer drug. In this study, paclitaxel is used as an anticancer drug which promotes microtubules polymerization and arrest cell cycle progression at mitosis and subsequently leading to cell death. The single use of PTX causes multiple drug resistance (MDR) and results failure of the therapy. Hence, the combination of PTX and P-glycoprotein inhibitor (ELA) are used to achieve maximum therapeutic effects of PTX. Moreover, monoclonal antibody (trastuzumab) is used as ligand for the targeting the drug bearing carriers to BC. Thus, trastuzumab anchored pH-sensitive liposomes bearing PTX and ELA were developed using thin film hydration method and Box-Behnken Design (BBD) for optimizing various formulation variables. The optimized liposomes undergo characterization such as vesicle size, PDI, and zeta potential, which were observed to be 122 ± 2.14 nm, 0.224, and -15.5 mV for PEGylated pH-sensitive liposomes (PEG-Ls) and 134 ± 1.88 nm, 0.238, and -13.98 mV for TPPLs, respectively. The results of the <i>in vitro</i> drug release study of both formulations (PEG-Ls and TPPLs) showed enhanced percentage drug release at an acidic pH 5 as compared to drug release at a physiological pH 7.4. Further, the <i>in vitro</i> cytotoxicity studies were performed in the SK-BR-3 and MDA-MB-231 cell lines. The cellular uptake study of FITC-loaded TPPLs in SK-BR-3 cells showed greater uptake than FITC-loaded PEG-Ls, while in MDA-MB-231 cells there was no significant difference in cell uptake between FITC-loaded TPPLs and FITC-loaded PEG-Ls. Hence, it can be concluded that the HER-2 overexpressing cancer cell line (SK-BR-3) was showed better cytotoxicity and cell uptake of TPPLs than the cells that expressed low levels of HER2 (MDA-MB-231). The <i>in vivo</i> tumor regression study, TPPLs showed significantly more tumor burden reduction i.e. up ∼74% as compared to other liposomes after 28 days. Furthermore, the <i>in vivo</i> studies of TPPLs showed a minimal toxicity profile, minimal hemolysis, higher tumor tissue distribution, and superior antitumor efficacy as compared to other formulations. These studies confirmed that TPPLs are a safe and efficacious treatment for breast cancer.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":\" \",\"pages\":\"239-263\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2023.2248505\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2023.2248505","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是开发和评估负载 PEG 化 pH 敏感脂质体(TPPLs)的曲妥珠单抗共轭紫杉醇(PTX)和艾拉曲达(ELA),用于抗癌药物的定点递送。在这项研究中,紫杉醇被用作一种抗癌药物,它能促进微管聚合,在有丝分裂过程中阻止细胞周期的进展,进而导致细胞死亡。单一使用 PTX 会产生多重耐药性(MDR),导致治疗失败。因此,PTX 和 P 糖蛋白抑制剂(ELA)的联合使用可最大限度地发挥 PTX 的治疗效果。此外,单克隆抗体(曲妥珠单抗)被用作配体,用于将药物载体靶向至 BC。因此,我们采用薄膜水合法和盒式贝肯设计(BBD)优化了各种配方变量,开发出了含有 PTX 和 ELA 的曲妥珠单抗锚定 pH 值敏感脂质体。优化后的脂质体经过了囊泡尺寸、PDI 和 zeta 电位等表征,观察到 PEG 化 pH 敏感脂质体(PEG-Ls)的 Zeta 电位分别为 122 ± 2.14 nm、0.224 和 -15.5 mV,TPPLs 的 Zeta 电位分别为 134 ± 1.88 nm、0.238 和 -13.98 mV。两种制剂(PEG-Ls 和 TPPLs)的体外药物释放研究结果表明,在酸性 pH 值为 5 时,药物释放百分比高于生理 pH 值为 7.4 时。此外,还在 SK-BR-3 和 MDA-MB-231 细胞系中进行了体外细胞毒性研究。在 SK-BR-3 细胞中对 FITC 负载 TPPLs 的细胞摄取研究表明,其摄取量大于 FITC 负载 PEG-Ls,而在 MDA-MB-231 细胞中,FITC 负载 TPPLs 和 FITC 负载 PEG-Ls 的细胞摄取量没有明显差异。因此,可以得出结论,HER-2 过表达的癌细胞系(SK-BR-3)比 HER2 低表达的细胞(MDA-MB-231)对 TPPLs 的细胞毒性和细胞摄取效果更好。在体内肿瘤消退研究中,与其他脂质体相比,TPPLs 在 28 天后明显减少了肿瘤负荷,即减少了 74%。此外,与其他制剂相比,TPPLs 的体内研究显示其毒性极低、溶血极少、肿瘤组织分布更广、抗肿瘤疗效更佳。这些研究证实,TPPLs 是一种安全有效的乳腺癌治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antibody-conjugated pH-sensitive liposomes for HER-2 positive breast cancer: development, characterization, in vitro and in vivo assessment.

The object of the current study was to develop and evaluate trastuzumab-conjugated Paclitaxel (PTX) and Elacridar (ELA)-loaded PEGylated pH-sensitive liposomes (TPPLs) for site-specific delivery of an anticancer drug. In this study, paclitaxel is used as an anticancer drug which promotes microtubules polymerization and arrest cell cycle progression at mitosis and subsequently leading to cell death. The single use of PTX causes multiple drug resistance (MDR) and results failure of the therapy. Hence, the combination of PTX and P-glycoprotein inhibitor (ELA) are used to achieve maximum therapeutic effects of PTX. Moreover, monoclonal antibody (trastuzumab) is used as ligand for the targeting the drug bearing carriers to BC. Thus, trastuzumab anchored pH-sensitive liposomes bearing PTX and ELA were developed using thin film hydration method and Box-Behnken Design (BBD) for optimizing various formulation variables. The optimized liposomes undergo characterization such as vesicle size, PDI, and zeta potential, which were observed to be 122 ± 2.14 nm, 0.224, and -15.5 mV for PEGylated pH-sensitive liposomes (PEG-Ls) and 134 ± 1.88 nm, 0.238, and -13.98 mV for TPPLs, respectively. The results of the in vitro drug release study of both formulations (PEG-Ls and TPPLs) showed enhanced percentage drug release at an acidic pH 5 as compared to drug release at a physiological pH 7.4. Further, the in vitro cytotoxicity studies were performed in the SK-BR-3 and MDA-MB-231 cell lines. The cellular uptake study of FITC-loaded TPPLs in SK-BR-3 cells showed greater uptake than FITC-loaded PEG-Ls, while in MDA-MB-231 cells there was no significant difference in cell uptake between FITC-loaded TPPLs and FITC-loaded PEG-Ls. Hence, it can be concluded that the HER-2 overexpressing cancer cell line (SK-BR-3) was showed better cytotoxicity and cell uptake of TPPLs than the cells that expressed low levels of HER2 (MDA-MB-231). The in vivo tumor regression study, TPPLs showed significantly more tumor burden reduction i.e. up ∼74% as compared to other liposomes after 28 days. Furthermore, the in vivo studies of TPPLs showed a minimal toxicity profile, minimal hemolysis, higher tumor tissue distribution, and superior antitumor efficacy as compared to other formulations. These studies confirmed that TPPLs are a safe and efficacious treatment for breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
期刊最新文献
Dual-ligand functionalized liposomes with iRGD/trastuzumab co-loaded with gefitinib and lycorine for enhanced metastatic breast cancer therapy. Responsiveness of glycyrrhetinic acid modified liposome toward secretory phospholipase A2 and its growth inhibitory in Colo205 cells. Preparation of sodium hyaluronate coated liposomes: effect of polymer molecular weight, coating concentration, amount of charged lipids and type of hydration medium on the stability. Cytoprotective effects of liposomal ganglioside GM1. The future of lactoferrin: A closer look at LipoDuo technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1