细菌插入序列IS1202家族的一个亚类靶向XerCD重组位点。

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY Plasmid Pub Date : 2023-07-01 DOI:10.1016/j.plasmid.2023.102696
Patricia Siguier , Philippe Rousseau , François Cornet , Michael Chandler
{"title":"细菌插入序列IS1202家族的一个亚类靶向XerCD重组位点。","authors":"Patricia Siguier ,&nbsp;Philippe Rousseau ,&nbsp;François Cornet ,&nbsp;Michael Chandler","doi":"10.1016/j.plasmid.2023.102696","DOIUrl":null,"url":null,"abstract":"<div><p>We describe here a new family of IS which are related to IS<em>1202</em>, originally isolated from <span><em>Streptococcus pneumoniae</em></span><span> in the mid-1990s and previously tagged as an emerging IS family in the ISfinder database. Members of this family have impacted some important properties of their hosts. We describe here another potentially important property of certain family members: specific targeting of xrs recombination sites.</span></p><p><span>The family could be divided into three subgroups based on their transposase sequences and the length on the target repeats (DR) they generate on insertion: subgroup IS</span><em>1202</em> (24<span>–</span>29 bp); IS<em>Tde1</em> (15<span>–</span>18 bp); and IS<em>Aba32</em> (5<span>–</span>6 bp). Members of the IS<em>Aba32</em> subgroup were repeatedly found abutting <u>X</u>er recombinase <u>r</u>ecombination <u>s</u>ites (<em>xrs</em>), separated by an intervening copy of a DR. These <em>xrs</em> sites, present in multiple copies in a number of <span><em>Acinetobacter</em></span><span><span> plasmids flanking antibiotic resistance genes, were proposed to form a new type of </span>mobile genetic element<span> using the chromosomally-encoded XerCD recombinase for mobility. Transposase alignments identified subgroup-specific indels which may be responsible for the differences in the transposition properties of the three subgroups (i.e. DR length and target specificity). We propose that this collection of IS be classed as a new insertion sequence family: the IS</span></span><em>1202</em> family composed of three subgroups, only one of which specifically targets plasmid-borne <em>xrs</em>. We discuss the implications of <em>xrs</em> targeting for gene mobility.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A subclass of the IS1202 family of bacterial insertion sequences targets XerCD recombination sites\",\"authors\":\"Patricia Siguier ,&nbsp;Philippe Rousseau ,&nbsp;François Cornet ,&nbsp;Michael Chandler\",\"doi\":\"10.1016/j.plasmid.2023.102696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe here a new family of IS which are related to IS<em>1202</em>, originally isolated from <span><em>Streptococcus pneumoniae</em></span><span> in the mid-1990s and previously tagged as an emerging IS family in the ISfinder database. Members of this family have impacted some important properties of their hosts. We describe here another potentially important property of certain family members: specific targeting of xrs recombination sites.</span></p><p><span>The family could be divided into three subgroups based on their transposase sequences and the length on the target repeats (DR) they generate on insertion: subgroup IS</span><em>1202</em> (24<span>–</span>29 bp); IS<em>Tde1</em> (15<span>–</span>18 bp); and IS<em>Aba32</em> (5<span>–</span>6 bp). Members of the IS<em>Aba32</em> subgroup were repeatedly found abutting <u>X</u>er recombinase <u>r</u>ecombination <u>s</u>ites (<em>xrs</em>), separated by an intervening copy of a DR. These <em>xrs</em> sites, present in multiple copies in a number of <span><em>Acinetobacter</em></span><span><span> plasmids flanking antibiotic resistance genes, were proposed to form a new type of </span>mobile genetic element<span> using the chromosomally-encoded XerCD recombinase for mobility. Transposase alignments identified subgroup-specific indels which may be responsible for the differences in the transposition properties of the three subgroups (i.e. DR length and target specificity). We propose that this collection of IS be classed as a new insertion sequence family: the IS</span></span><em>1202</em> family composed of three subgroups, only one of which specifically targets plasmid-borne <em>xrs</em>. We discuss the implications of <em>xrs</em> targeting for gene mobility.</p></div>\",\"PeriodicalId\":49689,\"journal\":{\"name\":\"Plasmid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmid\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147619X23000276\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmid","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147619X23000276","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

我们在这里描述了一个与IS1202相关的新的IS家族,该家族最初于20世纪90年代中期从肺炎链球菌中分离出来,之前在ISfinder数据库中被标记为一个新兴的IS家族。该族的成员影响了其宿主的一些重要属性。我们在这里描述了某些家族成员的另一个潜在的重要特性:xrs重组位点的特异性靶向。根据其转座酶序列和插入时产生的靶重复序列(DR)的长度,该家族可分为三个亚组:亚组IS1202(24-29bp);ISTde1(15-18bp);ISAba32(5-6bp)。ISAba32亚组的成员被反复发现与Xer重组酶重组位点(xrs)相邻,由一个DR的中间拷贝分隔。这些xrs位点存在于抗生素抗性基因两侧的许多不动杆菌质粒中的多个拷贝中,被提议使用染色体编码的XerCD重组酶形成一种新型的可移动遗传元件。转座酶比对确定了亚组特异性indel,这可能是三个亚组转座特性(即DR长度和靶特异性)差异的原因。我们建议将该IS集合归类为一个新的插入序列家族:IS1202家族由三个亚群组成,其中只有一个亚群特异性靶向质粒携带的xrs。我们讨论了xrs靶向对基因迁移的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A subclass of the IS1202 family of bacterial insertion sequences targets XerCD recombination sites

We describe here a new family of IS which are related to IS1202, originally isolated from Streptococcus pneumoniae in the mid-1990s and previously tagged as an emerging IS family in the ISfinder database. Members of this family have impacted some important properties of their hosts. We describe here another potentially important property of certain family members: specific targeting of xrs recombination sites.

The family could be divided into three subgroups based on their transposase sequences and the length on the target repeats (DR) they generate on insertion: subgroup IS1202 (2429 bp); ISTde1 (1518 bp); and ISAba32 (56 bp). Members of the ISAba32 subgroup were repeatedly found abutting Xer recombinase recombination sites (xrs), separated by an intervening copy of a DR. These xrs sites, present in multiple copies in a number of Acinetobacter plasmids flanking antibiotic resistance genes, were proposed to form a new type of mobile genetic element using the chromosomally-encoded XerCD recombinase for mobility. Transposase alignments identified subgroup-specific indels which may be responsible for the differences in the transposition properties of the three subgroups (i.e. DR length and target specificity). We propose that this collection of IS be classed as a new insertion sequence family: the IS1202 family composed of three subgroups, only one of which specifically targets plasmid-borne xrs. We discuss the implications of xrs targeting for gene mobility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasmid
Plasmid 生物-遗传学
CiteScore
4.70
自引率
3.80%
发文量
21
审稿时长
53 days
期刊介绍: Plasmid publishes original research on genetic elements in all kingdoms of life with emphasis on maintenance, transmission and evolution of extrachromosomal elements. Objects of interest include plasmids, bacteriophages, mobile genetic elements, organelle DNA, and genomic and pathogenicity islands.
期刊最新文献
miRNA heterologous production in bacteria: A systematic review focusing on the choice of plasmid features and bacterial/prokaryotic microfactory. Development of a thermostable Cre/lox-based gene disruption system and in vivo manipulations of the megaplasmid pTT27 in Thermus thermophilus HB27 Intercellular transfer of plasmid DNA between in vitro cultured HEK293 cells following transient transfection Variation in the plasmid backbone and dif module content of R3-T33 Acinetobacter plasmids Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1