{"title":"利用基因组数据评估种群关系和历史的方法。","authors":"Priya Moorjani, Garrett Hellenthal","doi":"10.1146/annurev-genom-111422-025117","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic data contain a record of our evolutionary history. The availability of large-scale datasets of human populations from various geographic areas and timescales, coupled with advances in the computational methods to analyze these data, has transformed our ability to use genetic data to learn about our evolutionary past. Here, we review some of the widely used statistical methods to explore and characterize population relationships and history using genomic data. We describe the intuition behind commonly used approaches, their interpretation, and important limitations. For illustration, we apply some of these techniques to genome-wide autosomal data from 929 individuals representing 53 worldwide populations that are part of the Human Genome Diversity Project. Finally, we discuss the new frontiers in genomic methods to learn about population history. In sum, this review highlights the power (and limitations) of DNA to infer features of human evolutionary history, complementing the knowledge gleaned from other disciplines, such as archaeology, anthropology, and linguistics.</p>","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methods for Assessing Population Relationships and History Using Genomic Data.\",\"authors\":\"Priya Moorjani, Garrett Hellenthal\",\"doi\":\"10.1146/annurev-genom-111422-025117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic data contain a record of our evolutionary history. The availability of large-scale datasets of human populations from various geographic areas and timescales, coupled with advances in the computational methods to analyze these data, has transformed our ability to use genetic data to learn about our evolutionary past. Here, we review some of the widely used statistical methods to explore and characterize population relationships and history using genomic data. We describe the intuition behind commonly used approaches, their interpretation, and important limitations. For illustration, we apply some of these techniques to genome-wide autosomal data from 929 individuals representing 53 worldwide populations that are part of the Human Genome Diversity Project. Finally, we discuss the new frontiers in genomic methods to learn about population history. In sum, this review highlights the power (and limitations) of DNA to infer features of human evolutionary history, complementing the knowledge gleaned from other disciplines, such as archaeology, anthropology, and linguistics.</p>\",\"PeriodicalId\":8231,\"journal\":{\"name\":\"Annual review of genomics and human genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genomics and human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genom-111422-025117\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-111422-025117","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
遗传数据包含了人类进化史的记录。来自不同地理区域和时间尺度的大规模人类种群数据集的可用性,以及分析这些数据的计算方法的进步,改变了我们利用基因数据了解人类进化历史的能力。在此,我们将回顾一些广泛使用的统计方法,以便利用基因组数据探索和描述种群关系和历史。我们将介绍常用方法背后的直觉、解释以及重要的局限性。为了说明问题,我们将其中一些技术应用于人类基因组多样性项目(Human Genome Diversity Project)中代表全球 53 个种群的 929 个个体的全基因组常染色体数据。最后,我们讨论了基因组学方法在了解种群历史方面的新前沿。总之,这篇综述强调了 DNA 在推断人类进化史特征方面的能力(和局限性),是对考古学、人类学和语言学等其他学科知识的补充。
Methods for Assessing Population Relationships and History Using Genomic Data.
Genetic data contain a record of our evolutionary history. The availability of large-scale datasets of human populations from various geographic areas and timescales, coupled with advances in the computational methods to analyze these data, has transformed our ability to use genetic data to learn about our evolutionary past. Here, we review some of the widely used statistical methods to explore and characterize population relationships and history using genomic data. We describe the intuition behind commonly used approaches, their interpretation, and important limitations. For illustration, we apply some of these techniques to genome-wide autosomal data from 929 individuals representing 53 worldwide populations that are part of the Human Genome Diversity Project. Finally, we discuss the new frontiers in genomic methods to learn about population history. In sum, this review highlights the power (and limitations) of DNA to infer features of human evolutionary history, complementing the knowledge gleaned from other disciplines, such as archaeology, anthropology, and linguistics.
期刊介绍:
Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.