竞争环境下枯草芽孢杆菌生物膜表面形态的形成机制。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-07-01 DOI:10.1139/cjm-2023-0014
Xianyong Li, Rui Kong, Jiankun Wang, Jin Wu, Ketai He, Xiaoling Wang
{"title":"竞争环境下枯草芽孢杆菌生物膜表面形态的形成机制。","authors":"Xianyong Li,&nbsp;Rui Kong,&nbsp;Jiankun Wang,&nbsp;Jin Wu,&nbsp;Ketai He,&nbsp;Xiaoling Wang","doi":"10.1139/cjm-2023-0014","DOIUrl":null,"url":null,"abstract":"<p><p>Material properties and growth environments affect the surface morphology of biofilms. Taken the biofilm growing in competitive environments as the object, which is compared with the single biofilm, we find that the competitive environment has an impact on the biofilm thickness and wrinkle patterns. Through diffusion-limited growth theoretical model analysis, it shows that the competitive environment is caused by cells competing for nutrition, and the competitive environment reacts on biofilms, which affect the phenotypic differentiation, causing changes in the stiffness of the biofilm. Using the theoretical and finite element simulation, we compare these results of bi-layer and tri-layer film-substrate models with experimental observations, and find that tri-layer film-substrate model is in line with the reality, which means that the layer between the biofilm and substrate plays an import role for wrinkle formation. Based on the above analysis, we further study effects of biofilm stiffness and interlayer thickness on wrinkles under competitive environment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The formation mechanism of <i>Bacillus subtilis</i> biofilm surface morphology under competitive environment.\",\"authors\":\"Xianyong Li,&nbsp;Rui Kong,&nbsp;Jiankun Wang,&nbsp;Jin Wu,&nbsp;Ketai He,&nbsp;Xiaoling Wang\",\"doi\":\"10.1139/cjm-2023-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Material properties and growth environments affect the surface morphology of biofilms. Taken the biofilm growing in competitive environments as the object, which is compared with the single biofilm, we find that the competitive environment has an impact on the biofilm thickness and wrinkle patterns. Through diffusion-limited growth theoretical model analysis, it shows that the competitive environment is caused by cells competing for nutrition, and the competitive environment reacts on biofilms, which affect the phenotypic differentiation, causing changes in the stiffness of the biofilm. Using the theoretical and finite element simulation, we compare these results of bi-layer and tri-layer film-substrate models with experimental observations, and find that tri-layer film-substrate model is in line with the reality, which means that the layer between the biofilm and substrate plays an import role for wrinkle formation. Based on the above analysis, we further study effects of biofilm stiffness and interlayer thickness on wrinkles under competitive environment.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2023-0014\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2023-0014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

材料性质和生长环境影响生物膜的表面形态。以在竞争环境中生长的生物膜为对象,与单一生物膜进行比较,发现竞争环境对生物膜的厚度和皱褶形态有影响。通过扩散限制生长理论模型分析,表明竞争环境是由细胞争夺营养引起的,竞争环境作用于生物膜,影响表型分化,引起生物膜刚度的变化。通过理论和有限元模拟,我们将双层和三层膜-基质模型的结果与实验观察结果进行了比较,发现三层膜-基质模型更符合实际,这意味着生物膜与基质之间的层对皱纹的形成起着重要的作用。在此基础上,我们进一步研究了竞争环境下生物膜刚度和层间厚度对皱褶的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The formation mechanism of Bacillus subtilis biofilm surface morphology under competitive environment.

Material properties and growth environments affect the surface morphology of biofilms. Taken the biofilm growing in competitive environments as the object, which is compared with the single biofilm, we find that the competitive environment has an impact on the biofilm thickness and wrinkle patterns. Through diffusion-limited growth theoretical model analysis, it shows that the competitive environment is caused by cells competing for nutrition, and the competitive environment reacts on biofilms, which affect the phenotypic differentiation, causing changes in the stiffness of the biofilm. Using the theoretical and finite element simulation, we compare these results of bi-layer and tri-layer film-substrate models with experimental observations, and find that tri-layer film-substrate model is in line with the reality, which means that the layer between the biofilm and substrate plays an import role for wrinkle formation. Based on the above analysis, we further study effects of biofilm stiffness and interlayer thickness on wrinkles under competitive environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1