{"title":"DSENet:用于改善边缘设备听力的定向信号提取网络","authors":"Anton Kovalyov;Kashyap Patel;Issa Panahi","doi":"10.1109/ACCESS.2023.3235948","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a directional signal extraction network (DSENet). DSENet is a low-latency, real-time neural network that, given a reverberant mixture of signals captured by a microphone array, aims at extracting the reverberant signal whose source is located within a directional region of interest. If there are multiple sources situated within the directional region of interest, DSENet will aim at extracting a combination of their reverberant signals. As such, the formulation of DSENet circumvents the well-known crosstalk problem in beamforming while providing an alternative and perhaps more practical approach to other spatially constrained signal extraction methods proposed in the literature. DSENet is based on a computationally efficient and low-distortion linear model formulated in the time domain. As a result, an important application of our work is hearing improvement on edge devices. Simulation results show that DSENet outperforms oracle beamformers, as well as state-of-the-art in low-latency causal speech separation, while incurring a system latency of only 4 ms. Additionally, DSENet has been successfully deployed as a real-time application on a smartphone.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"11 ","pages":"4350-4358"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10015009","citationCount":"2","resultStr":"{\"title\":\"DSENet: Directional Signal Extraction Network for Hearing Improvement on Edge Devices\",\"authors\":\"Anton Kovalyov;Kashyap Patel;Issa Panahi\",\"doi\":\"10.1109/ACCESS.2023.3235948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a directional signal extraction network (DSENet). DSENet is a low-latency, real-time neural network that, given a reverberant mixture of signals captured by a microphone array, aims at extracting the reverberant signal whose source is located within a directional region of interest. If there are multiple sources situated within the directional region of interest, DSENet will aim at extracting a combination of their reverberant signals. As such, the formulation of DSENet circumvents the well-known crosstalk problem in beamforming while providing an alternative and perhaps more practical approach to other spatially constrained signal extraction methods proposed in the literature. DSENet is based on a computationally efficient and low-distortion linear model formulated in the time domain. As a result, an important application of our work is hearing improvement on edge devices. Simulation results show that DSENet outperforms oracle beamformers, as well as state-of-the-art in low-latency causal speech separation, while incurring a system latency of only 4 ms. Additionally, DSENet has been successfully deployed as a real-time application on a smartphone.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"11 \",\"pages\":\"4350-4358\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10015009\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10015009/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10015009/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DSENet: Directional Signal Extraction Network for Hearing Improvement on Edge Devices
In this paper, we propose a directional signal extraction network (DSENet). DSENet is a low-latency, real-time neural network that, given a reverberant mixture of signals captured by a microphone array, aims at extracting the reverberant signal whose source is located within a directional region of interest. If there are multiple sources situated within the directional region of interest, DSENet will aim at extracting a combination of their reverberant signals. As such, the formulation of DSENet circumvents the well-known crosstalk problem in beamforming while providing an alternative and perhaps more practical approach to other spatially constrained signal extraction methods proposed in the literature. DSENet is based on a computationally efficient and low-distortion linear model formulated in the time domain. As a result, an important application of our work is hearing improvement on edge devices. Simulation results show that DSENet outperforms oracle beamformers, as well as state-of-the-art in low-latency causal speech separation, while incurring a system latency of only 4 ms. Additionally, DSENet has been successfully deployed as a real-time application on a smartphone.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.