针对目标降解的集成建模方法:从半或完全机械模型和精确稳态解决方案中深入了解优化、数据要求和PKPD预测。

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2023-10-01 Epub Date: 2023-04-29 DOI:10.1007/s10928-023-09857-9
Sofia Guzzetti, Pablo Morentin Gutierrez
{"title":"针对目标降解的集成建模方法:从半或完全机械模型和精确稳态解决方案中深入了解优化、数据要求和PKPD预测。","authors":"Sofia Guzzetti,&nbsp;Pablo Morentin Gutierrez","doi":"10.1007/s10928-023-09857-9","DOIUrl":null,"url":null,"abstract":"<p><p>The value of an integrated mathematical modelling approach for protein degraders which combines the benefits of traditional turnover models and fully mechanistic models is presented. Firstly, we show how exact solutions of the mechanistic models of monovalent and bivalent degraders can provide insight on the role of each system parameter in driving the pharmacological response. We show how on/off binding rates and degradation rates are related to potency and maximal effect of monovalent degraders, and how such relationship can be used to suggest a compound optimization strategy. Even convoluted exact steady state solutions for bivalent degraders provide insight on the type of observations required to ensure the predictive capacity of a mechanistic approach. Specifically for PROTACs, the structure of the exact steady state solution suggests that the total remaining target at steady state, which is easily accessible experimentally, is insufficient to reconstruct the state of the whole system at equilibrium and observations on different species (such as binary/ternary complexes) are necessary. Secondly, global sensitivity analysis of fully mechanistic models for PROTACs suggests that both target and ligase baselines (actually, their ratio) are the major sources of variability in the response of non-cooperative systems, which speaks to the importance of characterizing their distribution in the target patient population. Finally, we propose a pragmatic modelling approach which incorporates the insights generated with fully mechanistic models into simpler turnover models to improve their predictive ability, hence enabling acceleration of drug discovery programs and increased probability of success in the clinic.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"50 5","pages":"327-349"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460745/pdf/","citationCount":"2","resultStr":"{\"title\":\"An integrated modelling approach for targeted degradation: insights on optimization, data requirements and PKPD predictions from semi- or fully-mechanistic models and exact steady state solutions.\",\"authors\":\"Sofia Guzzetti,&nbsp;Pablo Morentin Gutierrez\",\"doi\":\"10.1007/s10928-023-09857-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The value of an integrated mathematical modelling approach for protein degraders which combines the benefits of traditional turnover models and fully mechanistic models is presented. Firstly, we show how exact solutions of the mechanistic models of monovalent and bivalent degraders can provide insight on the role of each system parameter in driving the pharmacological response. We show how on/off binding rates and degradation rates are related to potency and maximal effect of monovalent degraders, and how such relationship can be used to suggest a compound optimization strategy. Even convoluted exact steady state solutions for bivalent degraders provide insight on the type of observations required to ensure the predictive capacity of a mechanistic approach. Specifically for PROTACs, the structure of the exact steady state solution suggests that the total remaining target at steady state, which is easily accessible experimentally, is insufficient to reconstruct the state of the whole system at equilibrium and observations on different species (such as binary/ternary complexes) are necessary. Secondly, global sensitivity analysis of fully mechanistic models for PROTACs suggests that both target and ligase baselines (actually, their ratio) are the major sources of variability in the response of non-cooperative systems, which speaks to the importance of characterizing their distribution in the target patient population. Finally, we propose a pragmatic modelling approach which incorporates the insights generated with fully mechanistic models into simpler turnover models to improve their predictive ability, hence enabling acceleration of drug discovery programs and increased probability of success in the clinic.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"50 5\",\"pages\":\"327-349\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460745/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-023-09857-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-023-09857-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2

摘要

介绍了蛋白质降解器综合数学建模方法的价值,该方法结合了传统周转模型和完全机械模型的优点。首先,我们展示了单价和二价降解物的机制模型的精确解如何能够深入了解每个系统参数在驱动药理学反应中的作用。我们展示了开启/关闭结合率和降解率如何与单价降解剂的效力和最大效果相关,以及如何利用这种关系来提出化合物优化策略。即使是二价降解物的复杂精确稳态解,也能深入了解确保机械方法预测能力所需的观测类型。特别是对于PROTAC,精确稳态解的结构表明,在稳态下的总剩余目标(很容易通过实验获得)不足以重建整个系统的平衡状态,有必要对不同物种(如二元/三元络合物)进行观察。其次,对PROTAC的全机制模型的全局敏感性分析表明,靶标和连接酶基线(实际上,它们的比率)是非合作系统反应变异的主要来源,这说明了表征它们在靶标患者群体中分布的重要性。最后,我们提出了一种实用的建模方法,将全机制模型产生的见解纳入更简单的周转模型中,以提高其预测能力,从而加快药物发现计划,提高临床成功的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated modelling approach for targeted degradation: insights on optimization, data requirements and PKPD predictions from semi- or fully-mechanistic models and exact steady state solutions.

The value of an integrated mathematical modelling approach for protein degraders which combines the benefits of traditional turnover models and fully mechanistic models is presented. Firstly, we show how exact solutions of the mechanistic models of monovalent and bivalent degraders can provide insight on the role of each system parameter in driving the pharmacological response. We show how on/off binding rates and degradation rates are related to potency and maximal effect of monovalent degraders, and how such relationship can be used to suggest a compound optimization strategy. Even convoluted exact steady state solutions for bivalent degraders provide insight on the type of observations required to ensure the predictive capacity of a mechanistic approach. Specifically for PROTACs, the structure of the exact steady state solution suggests that the total remaining target at steady state, which is easily accessible experimentally, is insufficient to reconstruct the state of the whole system at equilibrium and observations on different species (such as binary/ternary complexes) are necessary. Secondly, global sensitivity analysis of fully mechanistic models for PROTACs suggests that both target and ligase baselines (actually, their ratio) are the major sources of variability in the response of non-cooperative systems, which speaks to the importance of characterizing their distribution in the target patient population. Finally, we propose a pragmatic modelling approach which incorporates the insights generated with fully mechanistic models into simpler turnover models to improve their predictive ability, hence enabling acceleration of drug discovery programs and increased probability of success in the clinic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Novel endpoints based on tumor size ratio to support early clinical decision-making in oncology drug-development. Translational pharmacokinetic and pharmacodynamic modelling of the anti-ADAMTS-5 NANOBODY® (M6495) using the neo-epitope ARGS as a biomarker. QSP modeling of a transiently inactivating antibody-drug conjugate highlights benefit of short antibody half life. A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients. Comparison of the power and type 1 error of total score models for drug effect detection in clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1