治疗猴痘单一感染和人类免疫缺陷病毒或 SARS-CoV-2 合并感染的主要疗法的代谢途径。

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current drug metabolism Pub Date : 2023-01-01 DOI:10.2174/1389200224666230607124102
Daisy Yan, Bingfang Yan
{"title":"治疗猴痘单一感染和人类免疫缺陷病毒或 SARS-CoV-2 合并感染的主要疗法的代谢途径。","authors":"Daisy Yan, Bingfang Yan","doi":"10.2174/1389200224666230607124102","DOIUrl":null,"url":null,"abstract":"<p><p>Monkeypox is a zoonotic viral disease and remains endemic in tropical regions of Central and West Africa. Since May of 2022, cases of monkeypox have soared and spread worldwide. Confirmed cases have shown no travel history to the endemic regions as seen in the past. The World Health Organization declared monkeypox a global public health emergency in July 2022, and the United States government followed suit one month later. The current outbreak, in contrast to traditional epidemics, has high coinfection rates, particularly with HIV (human immunodeficiency virus), and to a lesser extent with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the pathogen of COVID-19. No drugs have been approved specifically for monkeypox. However, there are therapeutic agents authorized to treat monkeypox under the Investigational New Drug protocol, including brincidofovir, cidofovir, and tecovirimat. In contrast to limited options for monkeypox treatment, there are available drugs specifically for HIV or SARS-CoV-2 infection. Interestingly, these HIV and COVID-19 medicines share metabolism pathways with those authorized to treat monkeypox, particularly of hydrolysis, phosphorylation, and active membrane transport. This review discusses how these pathways shared by these medicines should be considered to gain therapeutic synergy and maximize safety for treating monkeypox coinfections.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"24 4","pages":"240-249"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089469/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolism Pathways of Major Therapeutics for Treating Monkeypox Mono- and Co-infection with Human Immunodeficient Virus or SARS-CoV-2.\",\"authors\":\"Daisy Yan, Bingfang Yan\",\"doi\":\"10.2174/1389200224666230607124102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monkeypox is a zoonotic viral disease and remains endemic in tropical regions of Central and West Africa. Since May of 2022, cases of monkeypox have soared and spread worldwide. Confirmed cases have shown no travel history to the endemic regions as seen in the past. The World Health Organization declared monkeypox a global public health emergency in July 2022, and the United States government followed suit one month later. The current outbreak, in contrast to traditional epidemics, has high coinfection rates, particularly with HIV (human immunodeficiency virus), and to a lesser extent with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the pathogen of COVID-19. No drugs have been approved specifically for monkeypox. However, there are therapeutic agents authorized to treat monkeypox under the Investigational New Drug protocol, including brincidofovir, cidofovir, and tecovirimat. In contrast to limited options for monkeypox treatment, there are available drugs specifically for HIV or SARS-CoV-2 infection. Interestingly, these HIV and COVID-19 medicines share metabolism pathways with those authorized to treat monkeypox, particularly of hydrolysis, phosphorylation, and active membrane transport. This review discusses how these pathways shared by these medicines should be considered to gain therapeutic synergy and maximize safety for treating monkeypox coinfections.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\"24 4\",\"pages\":\"240-249\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089469/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1389200224666230607124102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389200224666230607124102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

猴痘是一种人畜共患的病毒性疾病,目前仍在中非和西非的热带地区流行。自 2022 年 5 月以来,猴痘病例激增并蔓延至世界各地。确诊病例没有过去流行地区的旅行史。2022 年 7 月,世界卫生组织宣布猴痘为全球公共卫生紧急事件,一个月后,美国政府也宣布猴痘为全球公共卫生紧急事件。与传统流行病不同的是,目前的疫情有很高的合并感染率,特别是与艾滋病毒(人类免疫缺陷病毒)的合并感染率,其次是与SARS-CoV-2(严重急性呼吸系统综合征冠状病毒2)的合并感染率,SARS-CoV-2是COVID-19的病原体。目前还没有专门针对猴痘的药物获得批准。不过,根据新药研究协议,有一些治疗药物获准用于治疗猴痘,包括布林昔多福韦(brincidofovir)、西多福韦(cidofovir)和特可维马特(tecovirimat)。与治疗猴痘的有限选择相比,目前已有专门治疗艾滋病毒或 SARS-CoV-2 感染的药物。有趣的是,这些 HIV 和 COVID-19 药物与猴痘治疗药物有着相同的代谢途径,尤其是水解、磷酸化和主动膜转运。本综述讨论了在治疗猴痘并发感染时,应如何考虑这些药物共享的途径,以获得治疗协同作用并最大限度地提高安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolism Pathways of Major Therapeutics for Treating Monkeypox Mono- and Co-infection with Human Immunodeficient Virus or SARS-CoV-2.

Monkeypox is a zoonotic viral disease and remains endemic in tropical regions of Central and West Africa. Since May of 2022, cases of monkeypox have soared and spread worldwide. Confirmed cases have shown no travel history to the endemic regions as seen in the past. The World Health Organization declared monkeypox a global public health emergency in July 2022, and the United States government followed suit one month later. The current outbreak, in contrast to traditional epidemics, has high coinfection rates, particularly with HIV (human immunodeficiency virus), and to a lesser extent with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the pathogen of COVID-19. No drugs have been approved specifically for monkeypox. However, there are therapeutic agents authorized to treat monkeypox under the Investigational New Drug protocol, including brincidofovir, cidofovir, and tecovirimat. In contrast to limited options for monkeypox treatment, there are available drugs specifically for HIV or SARS-CoV-2 infection. Interestingly, these HIV and COVID-19 medicines share metabolism pathways with those authorized to treat monkeypox, particularly of hydrolysis, phosphorylation, and active membrane transport. This review discusses how these pathways shared by these medicines should be considered to gain therapeutic synergy and maximize safety for treating monkeypox coinfections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
期刊最新文献
Application of UPLC-MS/MS to Study Cellular Pharmacokinetics of Seven Active Components of Cnidii Fructus Extracts. Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Unveiling the Interplay: Antioxidant Enzyme Polymorphisms and Oxidative Stress in Preterm Neonatal Renal and Hepatic Functions. Quality by Design Approach for the Development of Cariprazine Hydrochloride Loaded Lipid-Based Formulation for Brain Delivery via Intranasal Route. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1