来自真实世界面孔的第一印象:评析萨瑟兰和杨(2022)

IF 3.2 2区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY British journal of psychology Pub Date : 2022-12-14 DOI:10.1111/bjop.12621
Alice J. O'Toole, Ying Hu
{"title":"来自真实世界面孔的第一印象:评析萨瑟兰和杨(2022)","authors":"Alice J. O'Toole, Ying Hu","doi":"10.1111/bjop.12621","DOIUrl":null,"url":null,"abstract":"The study of first impressions from faces now emphasizes the need to understand trait inferences made to naturalistic face images (British Journal of Psychology, 113, 2022, 1056). Face recognition algorithms based on deep convolutional neural networks simultaneously represent invariant, changeable and environmental variables in face images. Therefore, we suggest them as a comprehensive 'face space' model of first impressions of naturalistic faces. We also suggest that to understand trait inferences in the real world, a logical next step is to consider trait inferences made to whole people (faces and bodies). On the role of cultural contributions to trait perception, we think it is important for the field to begin to consider the way in which trait inferences motivate (or not) behaviour in independent and interdependent cultures.","PeriodicalId":9300,"journal":{"name":"British journal of psychology","volume":"114 2","pages":"508-510"},"PeriodicalIF":3.2000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443674/pdf/nihms-1922378.pdf","citationCount":"1","resultStr":"{\"title\":\"First impressions from faces in the real world: Commentary on Sutherland and Young (2022)\",\"authors\":\"Alice J. O'Toole, Ying Hu\",\"doi\":\"10.1111/bjop.12621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of first impressions from faces now emphasizes the need to understand trait inferences made to naturalistic face images (British Journal of Psychology, 113, 2022, 1056). Face recognition algorithms based on deep convolutional neural networks simultaneously represent invariant, changeable and environmental variables in face images. Therefore, we suggest them as a comprehensive 'face space' model of first impressions of naturalistic faces. We also suggest that to understand trait inferences in the real world, a logical next step is to consider trait inferences made to whole people (faces and bodies). On the role of cultural contributions to trait perception, we think it is important for the field to begin to consider the way in which trait inferences motivate (or not) behaviour in independent and interdependent cultures.\",\"PeriodicalId\":9300,\"journal\":{\"name\":\"British journal of psychology\",\"volume\":\"114 2\",\"pages\":\"508-510\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443674/pdf/nihms-1922378.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British journal of psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bjop.12621\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bjop.12621","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

对面部第一印象的研究现在强调需要理解从自然主义的面部图像中推断出的特征(英国心理学杂志,113,2022,1056)。基于深度卷积神经网络的人脸识别算法同时表示人脸图像中的不变量、可变变量和环境变量。因此,我们建议它们作为自然主义面孔第一印象的综合“面部空间”模型。我们还建议,为了理解现实世界中的特质推断,合乎逻辑的下一步是考虑对整个人(面部和身体)的特质推断。关于文化对特质感知的作用,我们认为该领域开始考虑在独立和相互依存的文化中,特质推断激励(或不激励)行为的方式是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First impressions from faces in the real world: Commentary on Sutherland and Young (2022)
The study of first impressions from faces now emphasizes the need to understand trait inferences made to naturalistic face images (British Journal of Psychology, 113, 2022, 1056). Face recognition algorithms based on deep convolutional neural networks simultaneously represent invariant, changeable and environmental variables in face images. Therefore, we suggest them as a comprehensive 'face space' model of first impressions of naturalistic faces. We also suggest that to understand trait inferences in the real world, a logical next step is to consider trait inferences made to whole people (faces and bodies). On the role of cultural contributions to trait perception, we think it is important for the field to begin to consider the way in which trait inferences motivate (or not) behaviour in independent and interdependent cultures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
British journal of psychology
British journal of psychology PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.50%
发文量
67
期刊介绍: The British Journal of Psychology publishes original research on all aspects of general psychology including cognition; health and clinical psychology; developmental, social and occupational psychology. For information on specific requirements, please view Notes for Contributors. We attract a large number of international submissions each year which make major contributions across the range of psychology.
期刊最新文献
Automated face recognition assists with low-prevalence face identity mismatches but can bias users. The role of surface and structural similarities in the retrieval of realistic perceptual events. Daily effects of a brief compassion-focused intervention for self-compassion. Inter-brain synchrony is associated with greater shared identity within naturalistic conversational pairs. The differences in essential facial areas for impressions between humans and deep learning models: An eye-tracking and explainable AI approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1