三螺旋束和 SH3 型桶:小型和大型蛋白质中自主稳定的结构主题。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2024-10-01 Epub Date: 2023-08-28 DOI:10.1080/07391102.2023.2250450
Kirill Sergeevich Nikolsky, Liudmila Ivanovna Kulikova, Denis Vitalievich Petrovskiy, Vladimir Removich Rudnev, Tatiana Vladimirovna Butkova, Kristina Akhmedovna Malsagova, Arthur Tigranovich Kopylov, Anna Leonidovna Kaysheva
{"title":"三螺旋束和 SH3 型桶:小型和大型蛋白质中自主稳定的结构主题。","authors":"Kirill Sergeevich Nikolsky, Liudmila Ivanovna Kulikova, Denis Vitalievich Petrovskiy, Vladimir Removich Rudnev, Tatiana Vladimirovna Butkova, Kristina Akhmedovna Malsagova, Arthur Tigranovich Kopylov, Anna Leonidovna Kaysheva","doi":"10.1080/07391102.2023.2250450","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we investigated two variants of a three-helix bundle and SH3-type barrel, compact in space, present in small and large proteins of various living organisms. Using a neural graph network, proteins with three-helix bundle (<i>n</i> = 1377) and SH3-type barrels (<i>n</i> = 1914) spatial folds were selected. Molecular experiments were performed for small proteins with these folds, and motifs were studied autonomously outside the protein environment at 300, 340, and 370 K. A comparative analysis of the main parameters of the structures in the course of the experiment was performed, including gyration radius, area accessible to the solvent, number of hydrophobic and hydrogen bonds, and root-mean-square deviation of atomic positions (RMSD). We exhibited an autonomous stability of the studied folds outside the protein environment in an aquatic medium. We aimed to demonstrate the possibility of analyzing three-helix bundle and SH3-type barrels autonomously outside the protein globule, thereby reducing the computational time and increasing performance without significant loss of information.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-helix bundle and SH3-type barrels: autonomously stable structural motifs in small and large proteins.\",\"authors\":\"Kirill Sergeevich Nikolsky, Liudmila Ivanovna Kulikova, Denis Vitalievich Petrovskiy, Vladimir Removich Rudnev, Tatiana Vladimirovna Butkova, Kristina Akhmedovna Malsagova, Arthur Tigranovich Kopylov, Anna Leonidovna Kaysheva\",\"doi\":\"10.1080/07391102.2023.2250450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we investigated two variants of a three-helix bundle and SH3-type barrel, compact in space, present in small and large proteins of various living organisms. Using a neural graph network, proteins with three-helix bundle (<i>n</i> = 1377) and SH3-type barrels (<i>n</i> = 1914) spatial folds were selected. Molecular experiments were performed for small proteins with these folds, and motifs were studied autonomously outside the protein environment at 300, 340, and 370 K. A comparative analysis of the main parameters of the structures in the course of the experiment was performed, including gyration radius, area accessible to the solvent, number of hydrophobic and hydrogen bonds, and root-mean-square deviation of atomic positions (RMSD). We exhibited an autonomous stability of the studied folds outside the protein environment in an aquatic medium. We aimed to demonstrate the possibility of analyzing three-helix bundle and SH3-type barrels autonomously outside the protein globule, thereby reducing the computational time and increasing performance without significant loss of information.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2250450\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2250450","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们调查了存在于各种生物体大小蛋白质中的空间紧凑的三螺旋束和 SH3 型桶的两种变体。通过神经图网络,我们筛选出了具有三螺旋束(n = 1377)和 SH3 型桶状(n = 1914)空间折叠的蛋白质。实验过程中对结构的主要参数进行了比较分析,包括回旋半径、溶剂可接触面积、疏水键和氢键的数量以及原子位置的均方根偏差(RMSD)。我们展示了所研究的褶皱在水生介质的蛋白质环境之外的自主稳定性。我们的目的是证明在蛋白质球外自主分析三螺旋束和 SH3 型桶的可能性,从而减少计算时间并提高性能,而不会损失大量信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-helix bundle and SH3-type barrels: autonomously stable structural motifs in small and large proteins.

In this study, we investigated two variants of a three-helix bundle and SH3-type barrel, compact in space, present in small and large proteins of various living organisms. Using a neural graph network, proteins with three-helix bundle (n = 1377) and SH3-type barrels (n = 1914) spatial folds were selected. Molecular experiments were performed for small proteins with these folds, and motifs were studied autonomously outside the protein environment at 300, 340, and 370 K. A comparative analysis of the main parameters of the structures in the course of the experiment was performed, including gyration radius, area accessible to the solvent, number of hydrophobic and hydrogen bonds, and root-mean-square deviation of atomic positions (RMSD). We exhibited an autonomous stability of the studied folds outside the protein environment in an aquatic medium. We aimed to demonstrate the possibility of analyzing three-helix bundle and SH3-type barrels autonomously outside the protein globule, thereby reducing the computational time and increasing performance without significant loss of information.Communicated by Ramaswamy H. Sarma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
The pharmacological actions of Danzhi-xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial. Broadening the scope of WEE1 inhibitors: identifying novel drug candidates via computational approaches and drug repurposing. Molecularly imprinted polymer-based sensors for identification volatile compounds in pharmaceutical products: in silico rational design. Computational insights into pediatric adenovirus inhibitors: in silico strategies for drug repurposing. Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1