肥胖脂肪细胞分泌的Osteopontin能增强血管生成并促进肥胖症胰腺导管腺癌的发展。

IF 4.9 2区 医学 Q2 CELL BIOLOGY Cellular Oncology Pub Date : 2024-02-01 Epub Date: 2023-08-29 DOI:10.1007/s13402-023-00865-y
Shigeki Fukusada, Takaya Shimura, Makoto Natsume, Ruriko Nishigaki, Yusuke Okuda, Hiroyasu Iwasaki, Naomi Sugimura, Mika Kitagawa, Takahito Katano, Mamoru Tanaka, Keiji Ozeki, Eiji Kubota, Kazuki Hayashi, Hiromi Kataoka
{"title":"肥胖脂肪细胞分泌的Osteopontin能增强血管生成并促进肥胖症胰腺导管腺癌的发展。","authors":"Shigeki Fukusada, Takaya Shimura, Makoto Natsume, Ruriko Nishigaki, Yusuke Okuda, Hiroyasu Iwasaki, Naomi Sugimura, Mika Kitagawa, Takahito Katano, Mamoru Tanaka, Keiji Ozeki, Eiji Kubota, Kazuki Hayashi, Hiromi Kataoka","doi":"10.1007/s13402-023-00865-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Obesity is a risk factor and poor prognostic factor for pancreatic ductal adenocarcinoma (PDAC), but the underlying mechanisms remain unclear.</p><p><strong>Methods: </strong>PDAC cells and obese visceral adipocytes (O-Ad) derived from mice and humans were used to analyze interactions between the two cell types, and human microvascular endothelial cells were used for angiogenesis assay. A xenograft mouse model with subcutaneously injected PDAC cells was used for animal studies. The relationship between visceral fat and prognosis was analyzed using resected tissues from PDAC patients with and without obesity.</p><p><strong>Results: </strong>Conditioned media (CM) from O-Ad significantly increased PDAC cell growth and migration and angiogenic capacity in both human and mice cells, and blocking osteopontin (OPN) in O-Ad canceled O-Ad-induced effects in both mouse and human cells. In addition, O-Ad directly increased the migratory and tube-forming capacities of endothelial cells, while blocking OPN canceled these effects. O-Ad increased AKT phosphorylation and VEGFA expression in both PDAC and endothelial cells, and OPN inhibition in O-Ad canceled those O-Ad-induced effects. In the xenograft model, PDAC tumor volume was significantly increased in obese mice compared with lean mice, whereas blocking OPN significantly inhibited obesity-accelerated tumor growth. OPN expression in adipose tissues adjacent to human PDAC tumor was significantly higher in obese patients than in non-obese patients. In PDAC patients with obesity, high OPN expression in adipose tissues was significantly associated with poor prognosis.</p><p><strong>Conclusion: </strong>Obese adipocytes trigger aggressive transformation in PDAC cells to induce PDAC progression and accelerate angiogenesis via OPN secretion.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"229-244"},"PeriodicalIF":4.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteopontin secreted from obese adipocytes enhances angiogenesis and promotes progression of pancreatic ductal adenocarcinoma in obesity.\",\"authors\":\"Shigeki Fukusada, Takaya Shimura, Makoto Natsume, Ruriko Nishigaki, Yusuke Okuda, Hiroyasu Iwasaki, Naomi Sugimura, Mika Kitagawa, Takahito Katano, Mamoru Tanaka, Keiji Ozeki, Eiji Kubota, Kazuki Hayashi, Hiromi Kataoka\",\"doi\":\"10.1007/s13402-023-00865-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Obesity is a risk factor and poor prognostic factor for pancreatic ductal adenocarcinoma (PDAC), but the underlying mechanisms remain unclear.</p><p><strong>Methods: </strong>PDAC cells and obese visceral adipocytes (O-Ad) derived from mice and humans were used to analyze interactions between the two cell types, and human microvascular endothelial cells were used for angiogenesis assay. A xenograft mouse model with subcutaneously injected PDAC cells was used for animal studies. The relationship between visceral fat and prognosis was analyzed using resected tissues from PDAC patients with and without obesity.</p><p><strong>Results: </strong>Conditioned media (CM) from O-Ad significantly increased PDAC cell growth and migration and angiogenic capacity in both human and mice cells, and blocking osteopontin (OPN) in O-Ad canceled O-Ad-induced effects in both mouse and human cells. In addition, O-Ad directly increased the migratory and tube-forming capacities of endothelial cells, while blocking OPN canceled these effects. O-Ad increased AKT phosphorylation and VEGFA expression in both PDAC and endothelial cells, and OPN inhibition in O-Ad canceled those O-Ad-induced effects. In the xenograft model, PDAC tumor volume was significantly increased in obese mice compared with lean mice, whereas blocking OPN significantly inhibited obesity-accelerated tumor growth. OPN expression in adipose tissues adjacent to human PDAC tumor was significantly higher in obese patients than in non-obese patients. In PDAC patients with obesity, high OPN expression in adipose tissues was significantly associated with poor prognosis.</p><p><strong>Conclusion: </strong>Obese adipocytes trigger aggressive transformation in PDAC cells to induce PDAC progression and accelerate angiogenesis via OPN secretion.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"229-244\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00865-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00865-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:肥胖是胰腺导管腺癌(PDAC)的风险因素和不良预后因素,但其潜在机制仍不清楚:方法:使用小鼠和人类的 PDAC 细胞和肥胖内脏脂肪细胞(O-Ad)分析两种细胞类型之间的相互作用,并使用人类微血管内皮细胞进行血管生成检测。动物实验采用皮下注射 PDAC 细胞的异种移植小鼠模型。利用肥胖和非肥胖 PDAC 患者的切除组织分析了内脏脂肪与预后之间的关系:结果:O-Ad的条件培养基(CM)明显增加了PDAC细胞在人和小鼠细胞中的生长、迁移和血管生成能力。此外,O-Ad 还直接提高了内皮细胞的迁移能力和管形成能力,而阻断 OPN 则消除了这些影响。O-Ad 增加了 PDAC 和内皮细胞中的 AKT 磷酸化和 VEGFA 表达,而抑制 O-Ad 中的 OPN 可消除这些 O-Ad 诱导的效应。在异种移植模型中,与瘦小鼠相比,肥胖小鼠的PDAC肿瘤体积明显增大,而阻断OPN可明显抑制肥胖加速的肿瘤生长。肥胖患者邻近人类 PDAC 肿瘤的脂肪组织中 OPN 的表达明显高于非肥胖患者。在患有肥胖症的PDAC患者中,脂肪组织中OPN的高表达与预后不良明显相关:结论:肥胖脂肪细胞通过分泌 OPN 触发 PDAC 细胞的侵袭性转化,诱导 PDAC 进展并加速血管生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Osteopontin secreted from obese adipocytes enhances angiogenesis and promotes progression of pancreatic ductal adenocarcinoma in obesity.

Purpose: Obesity is a risk factor and poor prognostic factor for pancreatic ductal adenocarcinoma (PDAC), but the underlying mechanisms remain unclear.

Methods: PDAC cells and obese visceral adipocytes (O-Ad) derived from mice and humans were used to analyze interactions between the two cell types, and human microvascular endothelial cells were used for angiogenesis assay. A xenograft mouse model with subcutaneously injected PDAC cells was used for animal studies. The relationship between visceral fat and prognosis was analyzed using resected tissues from PDAC patients with and without obesity.

Results: Conditioned media (CM) from O-Ad significantly increased PDAC cell growth and migration and angiogenic capacity in both human and mice cells, and blocking osteopontin (OPN) in O-Ad canceled O-Ad-induced effects in both mouse and human cells. In addition, O-Ad directly increased the migratory and tube-forming capacities of endothelial cells, while blocking OPN canceled these effects. O-Ad increased AKT phosphorylation and VEGFA expression in both PDAC and endothelial cells, and OPN inhibition in O-Ad canceled those O-Ad-induced effects. In the xenograft model, PDAC tumor volume was significantly increased in obese mice compared with lean mice, whereas blocking OPN significantly inhibited obesity-accelerated tumor growth. OPN expression in adipose tissues adjacent to human PDAC tumor was significantly higher in obese patients than in non-obese patients. In PDAC patients with obesity, high OPN expression in adipose tissues was significantly associated with poor prognosis.

Conclusion: Obese adipocytes trigger aggressive transformation in PDAC cells to induce PDAC progression and accelerate angiogenesis via OPN secretion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
期刊最新文献
IRE1α inhibitor reduces cisplatin resistance in ovarian cancer by modulating IRE1α/XBP1 pathway. Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance. Non-glycanated ΔDCN isoform in muscle invasive bladder cancer mediates cancer stemness and gemcitabine resistance. SPG21, a potential oncogene targeted by miR-128-3p, amplifies HBx-induced carcinogenesis and chemoresistance via activation of TRPM7-mediated JNK pathway in hepatocellular carcinoma. Targeted gene delivery systems for T-cell engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1