{"title":"Rab GTPase Ypt1p和NNS复合物在前HAC1 mRNA上的顺序募集促进其在贝克酵母中的核降解。","authors":"Sunirmal Paira, Anish Chakraborty, Biswadip Das","doi":"10.1080/10985549.2023.2227016","DOIUrl":null,"url":null,"abstract":"<p><p>Induction of unfolded protein response involves activation of transcription factor Hac1p that is encoded by <i>HAC1</i> pre-mRNA harboring an intron and a bipartite element (BE), which is subjected to nuclear mRNA decay by the nuclear exosome/Cbc1p-Tif4631p-dependent Exosome Targeting (CTEXT) complex. Using a combination of genetic and biochemical approaches, we demonstrate that a Rab-GTPase Ypt1p controls unfolded protein response signaling dynamics. This regulation relies on the nuclear localization of a small fraction of the cellular Ypt1p pool in the absence of endoplasmic reticulum (ER)-stress causing a strong association of the nuclear Ypt1p with pre-<i>HAC1</i> mRNA that eventually promotes sequential recruitments of NNS, CTEXT, and the nuclear exosome onto this pre-mRNA. Recruitment of these decay factors onto pre-<i>HAC1</i> mRNA is accompanied by its rapid nuclear decay that produces a precursor RNA pool lacking functional BE thereby causing its inefficient targeting to Ire1p foci leading to their diminished splicing and translation. ER stress triggers rapid relocalization of the nuclear pool of Ypt1p to the cytoplasm leading to its dissociation from pre-<i>HAC1</i> mRNA thereby causing decreased recruitment of these decay factors to precursor <i>HAC1</i> RNA leading to its diminished degradation. Reduced decay results in an increased abundance of pre-<i>HAC1</i> mRNA with intact functional BE leading to its enhanced recruitment to Ire1p foci.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448977/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Sequential Recruitments of Rab-GTPase Ypt1p and the NNS Complex onto pre-<i>HAC1</i> mRNA Promote Its Nuclear Degradation in Baker's Yeast.\",\"authors\":\"Sunirmal Paira, Anish Chakraborty, Biswadip Das\",\"doi\":\"10.1080/10985549.2023.2227016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Induction of unfolded protein response involves activation of transcription factor Hac1p that is encoded by <i>HAC1</i> pre-mRNA harboring an intron and a bipartite element (BE), which is subjected to nuclear mRNA decay by the nuclear exosome/Cbc1p-Tif4631p-dependent Exosome Targeting (CTEXT) complex. Using a combination of genetic and biochemical approaches, we demonstrate that a Rab-GTPase Ypt1p controls unfolded protein response signaling dynamics. This regulation relies on the nuclear localization of a small fraction of the cellular Ypt1p pool in the absence of endoplasmic reticulum (ER)-stress causing a strong association of the nuclear Ypt1p with pre-<i>HAC1</i> mRNA that eventually promotes sequential recruitments of NNS, CTEXT, and the nuclear exosome onto this pre-mRNA. Recruitment of these decay factors onto pre-<i>HAC1</i> mRNA is accompanied by its rapid nuclear decay that produces a precursor RNA pool lacking functional BE thereby causing its inefficient targeting to Ire1p foci leading to their diminished splicing and translation. ER stress triggers rapid relocalization of the nuclear pool of Ypt1p to the cytoplasm leading to its dissociation from pre-<i>HAC1</i> mRNA thereby causing decreased recruitment of these decay factors to precursor <i>HAC1</i> RNA leading to its diminished degradation. Reduced decay results in an increased abundance of pre-<i>HAC1</i> mRNA with intact functional BE leading to its enhanced recruitment to Ire1p foci.</p>\",\"PeriodicalId\":18658,\"journal\":{\"name\":\"Molecular and Cellular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448977/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10985549.2023.2227016\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2023.2227016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Sequential Recruitments of Rab-GTPase Ypt1p and the NNS Complex onto pre-HAC1 mRNA Promote Its Nuclear Degradation in Baker's Yeast.
Induction of unfolded protein response involves activation of transcription factor Hac1p that is encoded by HAC1 pre-mRNA harboring an intron and a bipartite element (BE), which is subjected to nuclear mRNA decay by the nuclear exosome/Cbc1p-Tif4631p-dependent Exosome Targeting (CTEXT) complex. Using a combination of genetic and biochemical approaches, we demonstrate that a Rab-GTPase Ypt1p controls unfolded protein response signaling dynamics. This regulation relies on the nuclear localization of a small fraction of the cellular Ypt1p pool in the absence of endoplasmic reticulum (ER)-stress causing a strong association of the nuclear Ypt1p with pre-HAC1 mRNA that eventually promotes sequential recruitments of NNS, CTEXT, and the nuclear exosome onto this pre-mRNA. Recruitment of these decay factors onto pre-HAC1 mRNA is accompanied by its rapid nuclear decay that produces a precursor RNA pool lacking functional BE thereby causing its inefficient targeting to Ire1p foci leading to their diminished splicing and translation. ER stress triggers rapid relocalization of the nuclear pool of Ypt1p to the cytoplasm leading to its dissociation from pre-HAC1 mRNA thereby causing decreased recruitment of these decay factors to precursor HAC1 RNA leading to its diminished degradation. Reduced decay results in an increased abundance of pre-HAC1 mRNA with intact functional BE leading to its enhanced recruitment to Ire1p foci.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.