miR-71的保护和目标:一项系统综述和荟萃分析。

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Non-Coding RNA Pub Date : 2023-07-26 DOI:10.3390/ncrna9040041
Devin Naidoo, Ryan Brennan, Alexandre de Lencastre
{"title":"miR-71的保护和目标:一项系统综述和荟萃分析。","authors":"Devin Naidoo,&nbsp;Ryan Brennan,&nbsp;Alexandre de Lencastre","doi":"10.3390/ncrna9040041","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) perform a pivotal role in the regulation of gene expression across the animal kingdom. As negative regulators of gene expression, miRNAs have been shown to function in the genetic pathways that control many biological processes and have been implicated in roles in human disease. First identified as an aging-associated gene in <i>C. elegans</i>, miR-71, a miRNA, has a demonstrated capability of regulating processes in numerous different invertebrates, including platyhelminths, mollusks, and insects. In these organisms, miR-71 has been shown to affect a diverse range of pathways, including aging, development, and immune response. However, the exact mechanisms by which miR-71 regulates these pathways are not completely understood. In this paper, we review the identified functions of miR-71 across multiple organisms, including identified gene targets, pathways, and the conditions which affect regulatory action. Additionally, the degree of conservation of miR-71 in the evaluated organisms and the conservation of their predicted binding sites in target 3' UTRs was measured. These studies may provide an insight on the patterns, interactions, and conditions in which miR-71 is able to exert genotypic and phenotypic influence.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis.\",\"authors\":\"Devin Naidoo,&nbsp;Ryan Brennan,&nbsp;Alexandre de Lencastre\",\"doi\":\"10.3390/ncrna9040041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) perform a pivotal role in the regulation of gene expression across the animal kingdom. As negative regulators of gene expression, miRNAs have been shown to function in the genetic pathways that control many biological processes and have been implicated in roles in human disease. First identified as an aging-associated gene in <i>C. elegans</i>, miR-71, a miRNA, has a demonstrated capability of regulating processes in numerous different invertebrates, including platyhelminths, mollusks, and insects. In these organisms, miR-71 has been shown to affect a diverse range of pathways, including aging, development, and immune response. However, the exact mechanisms by which miR-71 regulates these pathways are not completely understood. In this paper, we review the identified functions of miR-71 across multiple organisms, including identified gene targets, pathways, and the conditions which affect regulatory action. Additionally, the degree of conservation of miR-71 in the evaluated organisms and the conservation of their predicted binding sites in target 3' UTRs was measured. These studies may provide an insight on the patterns, interactions, and conditions in which miR-71 is able to exert genotypic and phenotypic influence.</p>\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna9040041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna9040041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

MicroRNAs (miRNAs)在整个动物王国的基因表达调控中发挥着关键作用。作为基因表达的负调控因子,mirna已被证明在控制许多生物过程的遗传途径中发挥作用,并在人类疾病中发挥作用。miR-71是一种miRNA,最初在秀丽隐杆线虫中被发现是一种与衰老相关的基因,它已被证明具有调节许多不同无脊椎动物(包括扁形蠕虫、软体动物和昆虫)过程的能力。在这些生物体中,miR-71已被证明影响多种途径,包括衰老、发育和免疫反应。然而,miR-71调控这些通路的确切机制尚不完全清楚。在本文中,我们回顾了miR-71在多种生物中的已识别功能,包括已识别的基因靶点、途径和影响调控作用的条件。此外,我们还测量了miR-71在被评估生物中的保守程度,以及它们在目标3' utr中预测的结合位点的保守程度。这些研究可能为miR-71能够发挥基因型和表型影响的模式、相互作用和条件提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis.

MicroRNAs (miRNAs) perform a pivotal role in the regulation of gene expression across the animal kingdom. As negative regulators of gene expression, miRNAs have been shown to function in the genetic pathways that control many biological processes and have been implicated in roles in human disease. First identified as an aging-associated gene in C. elegans, miR-71, a miRNA, has a demonstrated capability of regulating processes in numerous different invertebrates, including platyhelminths, mollusks, and insects. In these organisms, miR-71 has been shown to affect a diverse range of pathways, including aging, development, and immune response. However, the exact mechanisms by which miR-71 regulates these pathways are not completely understood. In this paper, we review the identified functions of miR-71 across multiple organisms, including identified gene targets, pathways, and the conditions which affect regulatory action. Additionally, the degree of conservation of miR-71 in the evaluated organisms and the conservation of their predicted binding sites in target 3' UTRs was measured. These studies may provide an insight on the patterns, interactions, and conditions in which miR-71 is able to exert genotypic and phenotypic influence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
期刊最新文献
Cardiomyopathies: The Role of Non-Coding RNAs. MicroRNA Biogenesis, Gene Regulation Mechanisms, and Availability in Foods. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Non-Coding RNA as a Biomarker in Lung Cancer. Back to the Origin: Mechanisms of circRNA-Directed Regulation of Host Genes in Human Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1